Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Urgent, je dois rendre ce dm qui est l'exercice 4 de la pièce jointe qui me parait infaisable !!
Si quelqu'un pourrait me donner un coup de main.


Sagot :

Bonsoir,
L'arbre est en pièce jointe.

1)a) Sachant que le père est de génotype AA, la probabilité pour la génération 1 d'être du génotype AA est égale à [tex]r_0+\frac{1}{2}s_0[/tex].
b) Sachant que le père est de génotype Aa, la probabilité pour la génération 1 d'être du génotype AA est égale à [tex]\frac{1}{2}r_0+\frac{1}{4}s_0[/tex].
c) Sachant que le père est de génotype aa, la probabilité pour la génération 1 d'être du génotype AA est égale à 0.
d) [tex]r_1=r_0(r_0+\frac{1}{2}s_0)+s_0(\frac{1}{2}r_0+\frac{1}{4}s_0)[/tex]
[tex]r_1=r_0^2+\frac{1}{2}r_0s_0+\frac{1}{2}r_0s_0+\frac{1}{4}s_0^2\\r_1=r_0^2+r_0s_0+\frac{1}{4}s_0^2\\r_1=(r_0+\frac{1}{2}s_0)^2[/tex]

2) Par symétrie (voir arbre) , [tex]t_1=(t_0+\frac{1}{2}s_0)^2[/tex]

Sachant que r1 + s1 + t1 = 1, nous en déduisons que s1 = 1 - r1 - t1.
[tex]s_1=1-(r_0+\frac{1}{2}s_0)^2-(t_0+\frac{1}{2}s_0)^2[/tex]

3) [tex]r_0+\frac{1}{2}s_0=r_0-t_0+t_0+\frac{1}{2}s_0=r_0-t_0+\dfrac{2t_0+s_0}{2}\\=r_0-t_0+\dfrac{t_0+(t_0+s_0)}{2}\\=r_0-t_0+\dfrac{t_0+1-r_0}{2}=d+\dfrac{1-d}{2}=\dfrac{2d+1-d}{2}=\dfrac{1+d}{2}\\\\\Longrightarrow \boxed{r_1=(\dfrac{1+d}{2})^2}[/tex]

[tex]t_0+\frac{1}{2}s_0=t_0-r_0+r_0+\frac{1}{2}s_0=t_0-r_0+\dfrac{2r_0+s_0}{2}\\=t_0-r_0+\dfrac{r_0+(r_0+s_0)}{2}\\=t_0-r_0+\dfrac{r_0+1-t_0}{2}=-d+\dfrac{1+d}{2}=\dfrac{-2d+1+d}{2}=\dfrac{1-d}{2}\\\\\Longrightarrow \boxed{t_1=(\dfrac{1-d}{2})^2}[/tex]

[tex]s_1=1-r_1-t_1 =1-(\dfrac{1+d}{2})^2-(\dfrac{1-d}{2})^2\\=1-\dfrac{1+2d+d^2}{4}-\dfrac{1-2d+d^2}{4}\\=\dfrac{4-1-2d-d^2-1+2d-d^2}{4}=\dfrac{2-2d^2}{4}=\dfrac{2(1-d^2)}{4}\\\boxed{s_1=\dfrac{1-d^2}{2}}[/tex]

4) [tex]r_1-t_1=(\dfrac{1+d}{2})^2-(\dfrac{1-d}{2})^2=\\=\dfrac{1+2d+d^2}{4}-\dfrac{1-2d+d^2}{4}=\dfrac{4d}{4}=d[/tex]

Donc  [tex]r_1-t_1=r_0-t_0=d[/tex]
 
Par conséquent, les suites  [tex](r_n), \ (s_n)\ \ et\ \ (t_n)[/tex] sont des suites constantes (à partir du rang 1).

View image Аноним
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.