Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
Bonsoir,
Exercice 1.
[tex]\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{(2+3\sqrt{5})(2-3\sqrt{5})}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{2^2-(3\sqrt{5})^2}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{4-9\times5}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{-41}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{-(2-3\sqrt{5})}{41}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{-2+3\sqrt{5}}{41}[/tex]
Exercice 2
Thalès dans le triangle ABC avec (DE) parallèle à (BC)
[tex]\dfrac{OD}{OE}=\dfrac{OB}{OC}[/tex]
Thalès dans le triangle OEF avec (AB) parallèle à (EF)
[tex]\dfrac{OA}{OE}=\dfrac{OB}{OF}[/tex]
Divisons ces égalités entre elles.
[tex]\dfrac{\dfrac{OD}{OE}}{\dfrac{OA}{OE}}=\dfrac{\dfrac{OB}{OC}}{\dfrac{OB}{OF}}\\\\\\\\\dfrac{OD}{OE}\times\dfrac{OE}{OA}= \dfrac{OB}{OC}\times\dfrac{OF}{OB}\\\\\\\dfrac{OD}{OA}=\dfrac{OF}{OC}[/tex]
Par la réciproque du théorème de Thalès dans le triangle OCF, les droites (AD) et (CF) sont parallèles.
Exercice 1.
[tex]\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{(2+3\sqrt{5})(2-3\sqrt{5})}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{2^2-(3\sqrt{5})^2}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{4-9\times5}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{2-3\sqrt{5}}{-41}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{-(2-3\sqrt{5})}{41}\\\\\dfrac{1}{2+3\sqrt{5}}=\dfrac{-2+3\sqrt{5}}{41}[/tex]
Exercice 2
Thalès dans le triangle ABC avec (DE) parallèle à (BC)
[tex]\dfrac{OD}{OE}=\dfrac{OB}{OC}[/tex]
Thalès dans le triangle OEF avec (AB) parallèle à (EF)
[tex]\dfrac{OA}{OE}=\dfrac{OB}{OF}[/tex]
Divisons ces égalités entre elles.
[tex]\dfrac{\dfrac{OD}{OE}}{\dfrac{OA}{OE}}=\dfrac{\dfrac{OB}{OC}}{\dfrac{OB}{OF}}\\\\\\\\\dfrac{OD}{OE}\times\dfrac{OE}{OA}= \dfrac{OB}{OC}\times\dfrac{OF}{OB}\\\\\\\dfrac{OD}{OA}=\dfrac{OF}{OC}[/tex]
Par la réciproque du théorème de Thalès dans le triangle OCF, les droites (AD) et (CF) sont parallèles.
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.