Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.