Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonsoir,
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.