Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour ; je suis en difficultés par rapport a cet exercice qui contient un carré. Voici la consigne :

On considère l'expression suivante : E(x) = (3x+1)²-4.

1. a) Développer et réduire E(x) .

    b) Factoriser E(x) .

2. Utiliser la forme de l'expression E(x) la plus adéquate pour résoudre l'équation E(x) = 0.

Sagot :

1) a) E(x)=(3x+1)²-4=(9x²+6x+1)-4=9x²+6x-3

b) E(x)=(3x+1)²-4=(3x+1)²-2²=(3x+1-2)(3x+1+2)=(3x-1)(3x+3)=3(3x-1)(x+1)

2) E(x)=0

3(3x-1)(x+1)=0 => (3x-1)(x+1)=0 => 3x-1=0 ou x+1=0 donc x=1/3 ou x=-1

ainsi E(x)=0 quand x=1/3 ou x=-1

 a) tu as une identité remarquabledonc E (x) = 3x² + 2 x 3x x1 + 1²

E = 3x² + 6x  - 3

maintenant la factorisation

 E (x) = (3x + 1) [ ( 3x + 1) - 4 ]

 

E(x) =o revient à dire que (3x + 1 ) [ ( 3x + 1 ) - 4 ] = 0

donc équation produit nul l'un ou l'autre des produits est égal à 0

soit ( 3x + 1 ) = 0 donc 3x = -1 x = -1/3 ou [ ( 3x + 1 ) -4 ] =0 soit ( 3x - 3 ) = 0

x =1

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.