Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

On considère la fonction f définie sur R par:

 f(x)=x²-3 1)

 

1) (je l'ai fait)

 2) Trouver les antécédents du réel 2 par f.

 3) Démontrer que la fonction f est croissante sur l'intervalle [0;+ l'infini [ et décroissante sur ]- l'infini ; 0].

 

 Pouvez vous m'aider pour la question deux et me dire si je doit tracer un graphique pour la question trois ou pas.

 

Merci beaucoup. (mon professeur ma dit que c'été du niveau collége mais j'ai un trou de mémoir.)



Sagot :

2)f(x)=2 => x²-3=2 => x²-5=0 => x²-[tex]x^{2}-(\sqrt{5})^2[/tex]=0

=> [tex](x-\sqrt{5})(x+\sqrt{5})[/tex]=0

=> [tex]2 solutions : x=-\sqrt{5} et x=\sqrt{5}[/tex]

les antécédents de 2 par f sont : -\sqrt{5} et \sqrt{5}

3)f(x)=x²-3 f est défini sur R

f'(x)=2x f' est défini sur R avec f'(0)=0

f'(x) est donc nulle quand x est nul

ainsi

[tex]Pour x\geq0, f'(x)\geq0 donc f est croissante sur [0;+\infty[[/tex]

[tex]Pour x\leq0, f'(x)\leq0 donc f est decroissante sur ]-\infty;0][/tex]

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.