Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour, Je ne comprends pas comment procéder pour mon devoir de mathématiques.

Voici le sujet : 
f est une fonction définie sur P par f(x)=x^3+2x+1. Dans un repère, C désigne sa courbe représentative.
a) Déternimer une équation de la tangente T à C au point d'abscisse 0. (ça j'ai réussi)
b) Etudier le signe de f(x)-(2x+1) 
c) En déduire sa position relative de C en T.
Tracer C et T à l'écran d'une calculatrice afin de vérifier votre résultat.



Sagot :

b) soit g(x)=f(x)-(2x+1)=x^3. Donc tu dois étudier le signe de g(x)=x^3. Ca te donne g(x) strictement négatif pour x appartenant à ]-00 ; 0] (R-) et g(x) strictement positif pour x appartenant à [0;+00[.
Après, je pense que tu as mal recopié la question C car elle ne veut rien dire là. 
Bonsoir,

a) Une équation de la tangente à C au point d'abscisse 0 est de la forme  [tex]y=f'(0)(x-0)+f(0)[/tex], soit  [tex]y=f'(0)x+f(0).[/tex]

Or  [tex]f(0) = 0^3 + 2\times0+1\Longrightarrow f(0)=1[/tex]

[tex]f'(x)=(x^3+2x+1)'=3x^2+2\Longrightarrow f'(0)=0+2=2[/tex]

Par conséquent, une équation de la tangente à C au point d'abscisse 0 est  [tex]\boxed{T\ :\ y = 2x+1}[/tex].

b) [tex]f(x)=x^3+2x+1\\\\f(x)-(2x+1)=x^3[/tex]

Le signe de f(x) - (2x+1) est le même que le signe de x^3 (qui est le même que le signe de x puisque la fonction cube est croissante sur R)

Donc  f(x) - (2x+1) < 0 si x ∈ ]-inf ; 0[
         f(x) - (2x+1) > 0 si x ∈ ]0 ; +inf[

c) La position relative de C et de T se détermine par le signe de f(x) - (2x+1)

* Si x ∈ ]-inf ; 0[, alors f(x) - (2x+1) < 0 et par conséquent, C est en-dessous de T
* Si x ∈ ]0 ; +inf[, alors f(x) - (2x+1) > 0 et par conséquent, C est au-dessus. de T.
* Si x = 0, alors Ce et T ont un point commun.

(graphique en pièce jointe)

View image Аноним
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.