Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

jai cet exercice en anglais donc deja que je suis pas fort en math il le mette en anglais... et il faut repondre en anglais donc si quelqu'un pourrait m auder ca serai sympa :)

Jai Cet Exercice En Anglais Donc Deja Que Je Suis Pas Fort En Math Il Le Mette En Anglais Et Il Faut Repondre En Anglais Donc Si Quelquun Pourrait M Auder Ca Se class=

Sagot :

Il s'agit de résoudre une équation différentielle du 1er ordre :
(E) : N'(t)=a*N(t)-N²(t) et N(0)=2a

on obtient : N'=a*N-N²
donc N'/N²=a/N-1
on pose N=1/u
donc u=1/N et u'=-N'/N²
donc -u'=a*u-1
donc u'=-a*u+1
on pose u(t)=C*e^(-at)
donc u'(t)=-a*C*e^(-at)=-a*u(t)
donc u(t)=C*e^(-at) est une solution générale de (E)
de plus u0(t)=1/a est une solution particulière de (E)

donc les solutions complètes de (E) sont de la forme:
u(t)=C*e^(-at)+1/a
donc N(t)=1/(C*e^(-at)+1/a)
ainsi lim(N(t),+inf)=a