Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

ABC est un triangle tel que AC=6cm ; AB=4cm et BC=3.5cm
ACD est le triangle tel que AD=5cm ; CD=4cm et B et D ne sont pas du même côté de la droite (AC)
E est le milieu de [AB] et F est le milieu de [AC]
La parallèle à (CD) passant par F coupe (AD) en G
1) Faire un dessin en vrai grandeur et le coder
2) Montrer que (EF) est parallèle à (BC)
3) Montrer que G est le milieu de [AD]
4) Montrer que (EG) et (BD) sont parallèles
5) Calculer les longueurs EF et FG. Justifier
6) Calculer le périmètre de AEFG





Sagot :

1) Faire un dessin en vrai grandeur et le coder
Voir schéma pour avoir une idée de ce que ça peut donner, mais c'est à toi de le faire

2) Montrer que (EF) est parallèle à (BC)
Dans un triangle la droite qui passe par le milieu de deux côtés est parrallèle au troisième côté.
On sait que E est le milieu de [AB] et F est le milieu de [AC] Donc (EF)//(BC)

3) Montrer que G est le milieu de [AD]
Dans un triangle la droite qui passe par le milieu d'un côté et est parallèle à un deuxième côté coupe le troisième côté en son milieu.
On sait que F est le milieu de [AC] et (FG) // (CD)
Donc G est le milieu de [AD]

4) Montrer que (EG) et (BD) sont parallèles
Dans un triangle la droite qui passe par le milieu de deux côtés est parrallèle au troisième côté.
On sait que E est le milieu de [AB] et G est le milie de [AD] (démontré à la question précédente).
Donc (EG) // (BD]

5) Calculer les longueurs EF et FG. Justifier
Tu as 2 méthodes pour calculer.
Méthode 1 :
Dans un triangle la longueur du segment qui passe par le milieu de 2 côtés est égale à la moitié du troisième côté.
On sait que E est le milieu de [AB] et F est le milieu de [AC]
Donc
EF = BC/2
EF = 3.5/2 = 1.75 cm
FG = CD/2 =4/2
FG = 2 cm

Méthode 2 (théorème de Thalès à condition que tu l'ai vu en cours)
Dans le triangle ABC, les points B , E et A ainsi que C, F et A sont alignés dans cet ordre.
et (EF)//(BC)
Donc d'après le théorème de Thalès
AF/AC = AE/AB = EF/BC
d'où
EF = AE*BC/AB
E milieu de [AB] donc AE = AB/2=2
EF = 2*3.5/4 = 3.5/2
EF = 1.75 cm

Dans le triangle ADC, les points D , G et A ainsi que C, F et A sont alignés dans cet ordre.
et (CD)//(AD)
Donc d'après le théorème de Thalès
AF/AC = AG/AD = FG/CD
d'où
FG = CD*AG/AD
G milieu de [AD] donc AG = AD/2 = 5/2 = 2.5
FG = 4*2.5/5 = 4/2 = 2 cm

6) Calculer le périmètre de AEFG
P(AEFG) = AE+EF+FG+GA
P(AEFG) = 2+1.75+2+2.5
P(AEFG) = 8.25 cm

View image esefiha
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.