Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
1) Tu utilises la réciproque du théorème de Pythagore.
AH² + HC² = 6² + 4,5² = 56,25
AC² = 7,5² = 56,25.
AH² + HC² = AC².
Par la réciproque du théorème de Pythagore, on sait que le triangle AHC est rectangle et que [AC] est l'hypoténuse.
Donc ce triangle est rectangle en H.
2) L'aire du triangle ABC = (1/2) * base * hauteur
= (1/2) * BC * AH.
Or BC = BH + HC = 5,8 cm + 4,5 cm = 10,3 cm
AH = 6 cm
Aire du triangle ABC = (1/2) * 10,3 * 6 = 30,9 cm².
3) Le quadrilatère ADCH est un parallélogramme puisque ses diagonales [AC] et [DH] se coupent en leurs milieux M.
Or l'angle AHC est un angle droit (voir question 1)
Un parallélogramme dont un angle est droit, est un rectangle.
D'où ADCH est un rectangle.
1) Tu utilises la réciproque du théorème de Pythagore.
AH² + HC² = 6² + 4,5² = 56,25
AC² = 7,5² = 56,25.
AH² + HC² = AC².
Par la réciproque du théorème de Pythagore, on sait que le triangle AHC est rectangle et que [AC] est l'hypoténuse.
Donc ce triangle est rectangle en H.
2) L'aire du triangle ABC = (1/2) * base * hauteur
= (1/2) * BC * AH.
Or BC = BH + HC = 5,8 cm + 4,5 cm = 10,3 cm
AH = 6 cm
Aire du triangle ABC = (1/2) * 10,3 * 6 = 30,9 cm².
3) Le quadrilatère ADCH est un parallélogramme puisque ses diagonales [AC] et [DH] se coupent en leurs milieux M.
Or l'angle AHC est un angle droit (voir question 1)
Un parallélogramme dont un angle est droit, est un rectangle.
D'où ADCH est un rectangle.
1) On a : AH²+HC² = 6²+(4.5)² = 56.25 et AC = (7.5)² = 56.25
donc : AH²+HC² = AC²
danc d'après théorème de Vitaghors ltriangle ACH est triangle en H
2) La surface de ABC est : S = (AB*AC)/2
d'abord on calcule AB:
remarque : dans cette énnoncé on a un manque de données parsqu'on sait pas que les points A, B, et H sont linéaire (dans la meme droite )
donc : AH²+HC² = AC²
danc d'après théorème de Vitaghors ltriangle ACH est triangle en H
2) La surface de ABC est : S = (AB*AC)/2
d'abord on calcule AB:
remarque : dans cette énnoncé on a un manque de données parsqu'on sait pas que les points A, B, et H sont linéaire (dans la meme droite )
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.