Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonsoir pouvez vous m'aider ?

Voici un ex de math assez compliqué

Je vous remercie d'avance  



Bonsoir Pouvez Vous Maider Voici Un Ex De Math Assez Compliqué Je Vous Remercie Davance class=

Sagot :

Bonsoir,

Partie A

1) AB² + AC² = 4,2² + 5,6² = 49
     BC² = 7² = 49
==>  AB² + AC² = BC².
Par la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.

2) Le quadrilatère AMPQ est un parallélogramme ayant un angle droit.
C'est donc un rectangle.

Partie B.

1)  Par Thalès dans le triangle ABC, nous avons : 

[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{2,5}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]

D'où : [tex]BP=4,2\times\dfrac{2,5}{7}\Longrightarrow BP=1,5\ cm[/tex]

 [tex]PM=5,6\times\dfrac{2,5}{7}\Longrightarrow PM=2\ cm[/tex]

2) L'aire du rectangle APMQ = AP * PM
                                                  = (4,2 - 1,5) * 2
                                                  = 2,7 * 2 = 5,4 cm²

Partie C.

1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.

Donc  0 ≤ x ≤ 7.

b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.

2) a ) Par Thalès dans le triangle ABC, nous avons : 

1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.

Donc  0 ≤ x ≤ 7.

b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.

2) a ) Par Thalès dans le triangle ABC, nous avons : 

1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.

Donc  0 ≤ x ≤ 7.

b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.

2) a ) Par Thalès dans le triangle ABC, nous avons : 

[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{x}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]

D'où : [tex]BP=4,2\times\dfrac{x}{7}\Longrightarrow BP=0,6x[/tex]

 [tex]PM=5,6\times\dfrac{x}{7}\Longrightarrow PM=0,8x[/tex]

b) AP = AB - BP = 4,2 - 0,6x.

3) APMQ est un rectangle si PM = AP

0,8x = 4,2 - 0,6x
1,4x = 4,2
x = 0,3.

4) A(x) = AP * PM
   A(x) = (4,2 - 0,6x) * 0,8x
   A(x) = 4,2 * 0,8x - (0,6x) * (0,8x)
   A(x) = 3,36x - 0,48x²

4)a) A(1) = 3 et A(6) = 3
Les valeurs de x pour lesquelles l'aire du rectangle APMQ vaut 3 cm² sont x = 1 (cm) et x = 6 (cm).

b) L'aire du rectangle est maximale si x = 3,5 (cm).
Le point M est alors au milieu du segment [BC].

L'aire du rectangle vaudra : A(3,5) = 3,36*3,5 - 0,48*(3,5)² = 5,88 cm².
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.