Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.
Sagot :
Bonsoir,
Partie A
1) AB² + AC² = 4,2² + 5,6² = 49
BC² = 7² = 49
==> AB² + AC² = BC².
Par la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.
2) Le quadrilatère AMPQ est un parallélogramme ayant un angle droit.
C'est donc un rectangle.
Partie B.
1) Par Thalès dans le triangle ABC, nous avons :
[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{2,5}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]
D'où : [tex]BP=4,2\times\dfrac{2,5}{7}\Longrightarrow BP=1,5\ cm[/tex]
[tex]PM=5,6\times\dfrac{2,5}{7}\Longrightarrow PM=2\ cm[/tex]
2) L'aire du rectangle APMQ = AP * PM
= (4,2 - 1,5) * 2
= 2,7 * 2 = 5,4 cm²
Partie C.
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{x}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]
D'où : [tex]BP=4,2\times\dfrac{x}{7}\Longrightarrow BP=0,6x[/tex]
[tex]PM=5,6\times\dfrac{x}{7}\Longrightarrow PM=0,8x[/tex]
b) AP = AB - BP = 4,2 - 0,6x.
3) APMQ est un rectangle si PM = AP
0,8x = 4,2 - 0,6x
1,4x = 4,2
x = 0,3.
4) A(x) = AP * PM
A(x) = (4,2 - 0,6x) * 0,8x
A(x) = 4,2 * 0,8x - (0,6x) * (0,8x)
A(x) = 3,36x - 0,48x²
4)a) A(1) = 3 et A(6) = 3
Les valeurs de x pour lesquelles l'aire du rectangle APMQ vaut 3 cm² sont x = 1 (cm) et x = 6 (cm).
b) L'aire du rectangle est maximale si x = 3,5 (cm).
Le point M est alors au milieu du segment [BC].
L'aire du rectangle vaudra : A(3,5) = 3,36*3,5 - 0,48*(3,5)² = 5,88 cm².
Partie A
1) AB² + AC² = 4,2² + 5,6² = 49
BC² = 7² = 49
==> AB² + AC² = BC².
Par la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.
2) Le quadrilatère AMPQ est un parallélogramme ayant un angle droit.
C'est donc un rectangle.
Partie B.
1) Par Thalès dans le triangle ABC, nous avons :
[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{2,5}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]
D'où : [tex]BP=4,2\times\dfrac{2,5}{7}\Longrightarrow BP=1,5\ cm[/tex]
[tex]PM=5,6\times\dfrac{2,5}{7}\Longrightarrow PM=2\ cm[/tex]
2) L'aire du rectangle APMQ = AP * PM
= (4,2 - 1,5) * 2
= 2,7 * 2 = 5,4 cm²
Partie C.
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
1) a) Si M et B coïncident, alors x = BM = 0
Si M et C coïncident, alors x = BM = 7
Si M est entre B et c, 0 < x < 7.
Donc 0 ≤ x ≤ 7.
b) L'aire du rectangle APMQ est nulle puisqu'une de ses deux dimensions est nulle dans chaque cas.
2) a ) Par Thalès dans le triangle ABC, nous avons :
[tex]\dfrac{BM}{BC}=\dfrac{BP}{BA}=\dfrac{PM}{AC}\\\\\dfrac{x}{7}=\dfrac{BP}{4,2}=\dfrac{PM}{5,6}[/tex]
D'où : [tex]BP=4,2\times\dfrac{x}{7}\Longrightarrow BP=0,6x[/tex]
[tex]PM=5,6\times\dfrac{x}{7}\Longrightarrow PM=0,8x[/tex]
b) AP = AB - BP = 4,2 - 0,6x.
3) APMQ est un rectangle si PM = AP
0,8x = 4,2 - 0,6x
1,4x = 4,2
x = 0,3.
4) A(x) = AP * PM
A(x) = (4,2 - 0,6x) * 0,8x
A(x) = 4,2 * 0,8x - (0,6x) * (0,8x)
A(x) = 3,36x - 0,48x²
4)a) A(1) = 3 et A(6) = 3
Les valeurs de x pour lesquelles l'aire du rectangle APMQ vaut 3 cm² sont x = 1 (cm) et x = 6 (cm).
b) L'aire du rectangle est maximale si x = 3,5 (cm).
Le point M est alors au milieu du segment [BC].
L'aire du rectangle vaudra : A(3,5) = 3,36*3,5 - 0,48*(3,5)² = 5,88 cm².
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.