Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Montrez que la différence de l'inverse d'un nombre entier non nul et de l'inverse de celui qui le succède est égale à l'inverse du produit de ces nombres ". Merci d'avance "

Sagot :

L'inverse d'un nombre x est 1/x donc la différence de l'inverse de x par l'inverse de x+1 (pour tout x ≠ 0) donne :
1/x - 1/(x+1) = x+1 -x / x(x+1)  tu mets les deux fractions au même dénominateur
et donc ça donne 1/x(x+1) ce qui est bien l'inverse du produit de x par x+1

Tu as compris le raisonnement?