Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonsoir j'ai besoin d'aide pour mon exercice s"il vous plait :s
Les points M,N et P ont respectivement pour coordonnées (2;0) ,(-1;√ 3) et (-1; -√ 3).
1. Calculez les longueurs MN ,NP et PM.
2. Que pouvez vous en déduire pour le triangle MNP.
J'ai fait la figure et c'est un triangle  isocèle, mais je ne sais pas comment calculer MN NP et PM, il faut utiliser le theoreme de Pithagore je pense..
Merci :)


Sagot :

Bonsoir,

Les points M,N et P ont respectivement pour coordonnées (2;0) ,(-1;√ 3) et (-1; -√ 3).

[tex]MN=\sqrt{(x_N-x_M)^2+(y_N-y_M)^2}\\\\MN=\sqrt{(-1-2)^2+(\sqrt{3}-0)^2}\\\\MN=\sqrt{(-3)^2+(\sqrt{3})^2}\\\\MN=\sqrt{9+3}\\\\MN=\sqrt{12}=2\sqrt{3}[/tex]


[tex]NP=\sqrt{(x_P-x_N)^2+(y_P-y_N)^2}\\\\NP=\sqrt{[-1-(-1)]^2+(-\sqrt{3}-\sqrt{3})^2}\\\\NP=\sqrt{(0)^2+(2\sqrt{3})^2}\\\\NP=\sqrt{0+12}\\\\NP=\sqrt{12}=2\sqrt{3}[/tex]


[tex]PM=\sqrt{(x_M-x_P)^2+(y_M-y_P)^2}\\\\PM=\sqrt{[2-(-1)]^2+[0-(-\sqrt{3})]^2}\\\\PM=\sqrt{3^2+(\sqrt{3})^2}\\\\PM=\sqrt{9+3}\\\\PM=\sqrt{12}=2\sqrt{3}[/tex]

Les triangle MNP est donc équilatéral puisque ses 3 côtés ont la même longueur.
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.