Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Bonsoir,
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.