Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Bonsoir,
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.