Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
[tex]U_n=\sqrt{n+1}-\sqrt{n}\\\\U_n=\dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}\\\\U_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]2\sqrt{n}<\sqrt{n+1}+\sqrt{n}[/tex]
[tex]\dfrac{1}{2\sqrt{n}}>\dfrac{1}{\sqrt{n+1}+\sqrt{n}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n<\dfrac{1}{2\sqrt{n}}[/tex]
*****************************************************
[tex]n<n+1[/tex]
[tex]\sqrt{n}<\sqrt{n+1}[/tex] car la fonction racine carrée est croissante sur R+
[tex]\sqrt{n}+\sqrt{n+1}<\sqrt{n+1}+\sqrt{n+1}[/tex]
[tex]\sqrt{n}+\sqrt{n+1}<2\sqrt{n+1}[/tex]
[tex]\dfrac{1}{\sqrt{n}+\sqrt{n+1}}>\dfrac{1}{2\sqrt{n+1}}[/tex] car la fonction inverse est strictement décroissante sur R*.
Donc [tex]U_n>\dfrac{1}{2\sqrt{n+1}}[/tex]
*****************************************************
Par conséquent : [tex]\dfrac{1}{2\sqrt{n+1}}<U_n<\dfrac{1}{2\sqrt{n}}[/tex]
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.