Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonsoir,
Un domaine de définition d'une fonction f est l'ensemble des valeurs réelles de x telles que f(x) existe et est réel.
Il se détermine suivant les éventuelles conditions restrictives pour x.
Par exemple, un dénominateur ne peut pas être nul.
Il faudra donc retirer de l'ensemble R la (ou les) valeur(s) de x qui annule(nt) le dénominateur (en résolvant l'équation : dénominateur = 0)
[tex]f(x)=\dfrac{x+1}{x-1}[/tex]
Le dénominateur ne peut pas être nul.
L'équation x-1 = 0 donne x=1 comme solution.
Il faudra donc retirer cette valeur 1 de l'ensemble R.
Par conséquent, le domaine de définition de f est [tex]Df = R-\{1\} [/tex]
Autre exemple, une racine carrée n'est définie que si l'expression sous le radical est positive ou nulle.
[tex]f(x)=\sqrt{x-1}+x+2[/tex]
Il faut poser la condition : [tex]x-1\ge0[/tex], ce qui donne [tex]x\ge1[/tex]
Par conséquent, le domaine de définition de f est [tex]Df=[1,+\infty[[/tex]
D'autres fonctions exigent des conditions précises (la fonction logarithme, tangente, cotangente, ...).
Il est impossible ici de donner toutes les règles... :)
Un domaine de définition d'une fonction f est l'ensemble des valeurs réelles de x telles que f(x) existe et est réel.
Il se détermine suivant les éventuelles conditions restrictives pour x.
Par exemple, un dénominateur ne peut pas être nul.
Il faudra donc retirer de l'ensemble R la (ou les) valeur(s) de x qui annule(nt) le dénominateur (en résolvant l'équation : dénominateur = 0)
[tex]f(x)=\dfrac{x+1}{x-1}[/tex]
Le dénominateur ne peut pas être nul.
L'équation x-1 = 0 donne x=1 comme solution.
Il faudra donc retirer cette valeur 1 de l'ensemble R.
Par conséquent, le domaine de définition de f est [tex]Df = R-\{1\} [/tex]
Autre exemple, une racine carrée n'est définie que si l'expression sous le radical est positive ou nulle.
[tex]f(x)=\sqrt{x-1}+x+2[/tex]
Il faut poser la condition : [tex]x-1\ge0[/tex], ce qui donne [tex]x\ge1[/tex]
Par conséquent, le domaine de définition de f est [tex]Df=[1,+\infty[[/tex]
D'autres fonctions exigent des conditions précises (la fonction logarithme, tangente, cotangente, ...).
Il est impossible ici de donner toutes les règles... :)
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.