Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonsoir. :) 
J'ai besoin d'aide, je ne comprends vraiment rien.

Exercice 1 : 

Justifier un minimum à l'aide d'une expression algébrique ABCD est un carré de côté 4 cm.
M, N, P et Q sont les points placés sur les côtés du carré tels que AM = BN = CP = DQ.
On pose AM = x (en cm). 
On définit la fonction f qui à x associe l'aire du quadrilatère MNPQ (en cm²).
1) Dans quel intervalle peut varier x ? Quel est alors l'ensemble de définition de la fonction f ? 
2) Déterminer, en fonction de x, l'expression de l'aire du triangle rectangle AMQ.
3) Montrer que l'aire du quadrilatère MNPQ en fonction de x est : f(x) = 2x² - 8x + 16.
4) A l'aide de la calculatrice, établir un tableau de valeurs de f pour x variant de 0 à 4 avec un pas de 0.5.
5) A l'aide de la représentation graphique de f, conjecturer l'aire minimale du quadrilatère MNPQ. Pour quelle(s) valeur(s) de x est-elle atteinte ? 
6) Factoriser l'expression f(x) - 8 puis démontrer la conjecture énoncé dans la question 5.

Merci d'avance pour l'aide. (c'est assez urgent, c'est pour demain.) 


Bonsoir Jai Besoin Daide Je Ne Comprends Vraiment RienExercice 1 Justifier Un Minimum À Laide Dune Expression Algébrique ABCD Est Un Carré De Côté 4 CmM N P Et class=

Sagot :

ABCD a les 4 côtés égaux et les angles droits
1) Le quadrilatère MNPQ est aussi un carré car chacun de ses côtés = V(x² + (4-x)²)
Aire de MNPQ: f(x) = x² + (4-x)²
2) x varie de 0 à 4
3)  x² + (4-x)² = x² + 16 - 8x + x² = 2x² - 8x + 16 
4)  entrer f(x) en fonction "table"
je donne les valeurs de f(x) de 0 à 4 par pas de 0,5 dans l'ordre
16 ; 1,5 ; 10 ; 10; 8.5 ; 8 ; 8,5 ; 10 ; 12,5 ; 16
5) l'aire minimale du quadrilatère est 8 et est atteinte pour x = 2 
6)f(x) = 2(x² - 4x + 8 ) =2( x² - 4x + 4 + 4 ) = 2[(x-2)² + 4) la fonction passe par un minimum quand (x-2) = 0 c a d pour x = 2 elle vaut alors 2.4 = 8 
cqfd.
j'espère qu'il est encore temps.
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.