Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Soit ABC un triangle. On considère les points E et F tels que le vecteur AE=1/2 vecteurAB+VecteurBC et vecteurAF=3/2vecteurAC+vecteurBA. exprimer vecteurEF en foction de vecteurBC. Que peut-on en déduire sur les droites (EF) et (BC)?

Sagot :

xxx102
Bonsoir,

On commence par exprimer le vecteur EA, qui est l'opposé du vecteur AE : on remplace donc tous les vecteurs dans l'égalité vectorielle par leurs opposés.
[tex]\vec{AE} = \frac 12 \vec{AB} + \vec{BC}\\ \vec{EA} = \frac 12 \vec{BA} + \vec{CB}[/tex]
Maintenant, on peut utiliser la relation de Chasles pour exprimer le vecteur EF :
[tex]\vec{EF}= \vec{EA} +\vec{AF} = \frac 12 \vec{BA} + \vec{CB} + \frac 32 \vec{AC} + \vec{BA}\\ \vec{EF} = \frac 32 \vec{BA} +\frac 32 \vec{AC}+\vec{CB} = \frac 32 \vec{BC} + \vec{CB} = \frac 12 \vec{BC}[/tex]

Les vecteurs EF et BC sont donc colinéaires et (EF) // (CB).

Si tu as des questions, n'hésite pas à les ajouter en commentaire.