Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

La suite de mon dm je nai vraiment rien compris

 

on inscrit un cylindre dans une demi sphere de rayon 6 cm ( voir mon ancien devoir pour les questions precedentes

Question 4

estimer avec la calculatrice la hauteur du cylindre de volume maximal

 

b) comparer la valeur obtenue pour h a 2 racine de 3.

on admet que la valeur de h realisant le maximum est 2 racine de 3 

calculer le volume maximale du cylindre et son rayon

 

5) quelnpourcentage du volume de la demi sphere le cylindre de volume maximale occupe t il

 

merci davance



Sagot :

Bonsoir,

Question 4)

[tex]V(h)=\pi h(36-h^2)[/tex]

a) En donnant à h des valeurs successives allant de 0 à 6 et en affinant les recherches, nous avons : 

[tex]V(3,463)=\pi 3,463(36-3,463^2)\approx 261,1870688\\\\V(3,464)=\pi 3,464(36-3,464^2)\approx 261,1871081\\\\V(3,465)=\pi 3,465(36-3,465^2)\approx 261,1870821[/tex]

On peut donc estimer que le volume du cylindre sera maximal si [tex]h \approx 3,464\ cm.[/tex]

b) 
[tex]2\sqrt{3}\approx 3,464101615[/tex].

La valeur estimée de h est donc proche de  [tex]2\sqrt{3}[/tex].

C) Volume maximal du cylindre avec   [tex]h=2\sqrt{3}[/tex].

[tex]V(2\sqrt{3})=\pi [36-(2\sqrt{3})^2]\times 2\sqrt{3}\\\\V(2\sqrt{3}) = \pi (36-12)\times 2\sqrt{3}\\\\V(2\sqrt{3})=48\pi \sqrt{3}\ (cm^3)[/tex]

On sait que r² = 36 - h²

[tex]r^2=36-(2\sqrt{3})^2\\\\r^2 = 36-12\\\\r^2=24\\\\r=\sqrt{24}\approx4,9\ (cm)[/tex]

5) Volume d'une sphère de rayon r : [tex]V_{sph}=\dfrac{4}{3}\pi r^3[/tex].

Volume de la demi-sphère de rayon 6 cm : 

[tex]\dfrac{1}{2}\times \dfrac{4}{3}\pi 6^3 = 144\pi\ (cm^3)[/tex]

Quelle pourcentage le cylindre de volume maximal occupe-t-il par rapport au volume de la sphère ?

[tex]\dfrac{48\pi \sqrt{3}}{144\pi}\times 100 \approx 57,735\ \%[/tex]
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.