Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjours tout le monde j'ai un exercice en maths mais je ne comprend pas du tout ce que je dois faire : Soit g(x)=x+1/x pour tout x ∈ ]0 ;+∞[ a. Démontrer que g(x)-2= (x-1)²/x b.En déduire le minimum de g sur ]0;+∞[ et pour quelle valeur de x il est obtenu. Merci de bien vouloir m'aider

Sagot :

g(x) = x + 1/x

 

prouver que : g(x)-2= (x-1)²/x donc c'est prouver que

(x-1)²/x + 2 = g(x)

 

donc caluler : (x-1)²/x + 2

 

= (x² - 2x + 1)/x + 2x/2

= x²/x - 2x/x + 1/x + 2x/2

= x²/x + 1/x

= x + 1/x

= g(x)

c'est prouvé

 

b)

le minimum de g(x) c'est pour (x-1)²/x = 0 pour (x-1)² = 0 donc pour x = 1

donc le minimum est pour x = 1

 

En espérant t'avoir aidé.

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.