Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
1. Démonstration que ce
rectangle est rectangle en A
grâce à la réciproque du théorème de Pythagore
BC² = BA² + AC²
6² = (3,6² + 4,8²)
36 = 12,96 + 23,04
36 = 36 Alors ce triangle est rectangle en A et [BC] est l'hypoténuse
2.Justifier pourquoi les droites (AH) et (ED) sont parallèles.
Les points A, D, C et H, E,C sont alignés dans le même ordre. Les droites HA et ED sont parallèles d'après la propriété de Thalès CE/CH=CD/CA=ED/HA
2,4/CH = 3/4,8 = ED/HA
d'où CH = 2,4 x 4,8 / 3 = 3,84
CD/CA = 3/4,8 et EC/CH = 2,4/3,84
3 x 3,84 = 11,52
4,8 x 2,4 = 11,52
Donc HA // ED
3.Montrer par le calcul que ED vaut 1,8 cm.
Avec le théorème de Pythagore
EC² = DC² + ED²
2,4² = 3 + ED²
5,76 = 9 + ED² ED² = 9 - 5,76
ED² = 3,24
ED² = racine 3,24
ED = 1,8 cm
4.Calculer AH.
BC² = 6² = 36
BA² + AC² = 3,6² + 4,8² = 12,96 + 23,04 = 36
donc BA² + AC² = BC² or ça c'est le théorème de Pythagore donc l'hypoténuse est BC et le triangle ABC est rectangle en A
(le point d'intersection avec l'hypoténuse==> H donc la hauteur est AH puisque la hauteur d'un triangle est issue de l'angle droit et coupe l'hypoténuse perpendiculairement)
alors on admet cette égalité
BC x AH = AC x AB
AH = (AC x AB) / BC = (4,8 x 3,6) / 6 = 17,28 / 6 = 2,88
AH = 2,88 cm
grâce à la réciproque du théorème de Pythagore
BC² = BA² + AC²
6² = (3,6² + 4,8²)
36 = 12,96 + 23,04
36 = 36 Alors ce triangle est rectangle en A et [BC] est l'hypoténuse
2.Justifier pourquoi les droites (AH) et (ED) sont parallèles.
Les points A, D, C et H, E,C sont alignés dans le même ordre. Les droites HA et ED sont parallèles d'après la propriété de Thalès CE/CH=CD/CA=ED/HA
2,4/CH = 3/4,8 = ED/HA
d'où CH = 2,4 x 4,8 / 3 = 3,84
CD/CA = 3/4,8 et EC/CH = 2,4/3,84
3 x 3,84 = 11,52
4,8 x 2,4 = 11,52
Donc HA // ED
3.Montrer par le calcul que ED vaut 1,8 cm.
Avec le théorème de Pythagore
EC² = DC² + ED²
2,4² = 3 + ED²
5,76 = 9 + ED² ED² = 9 - 5,76
ED² = 3,24
ED² = racine 3,24
ED = 1,8 cm
4.Calculer AH.
BC² = 6² = 36
BA² + AC² = 3,6² + 4,8² = 12,96 + 23,04 = 36
donc BA² + AC² = BC² or ça c'est le théorème de Pythagore donc l'hypoténuse est BC et le triangle ABC est rectangle en A
(le point d'intersection avec l'hypoténuse==> H donc la hauteur est AH puisque la hauteur d'un triangle est issue de l'angle droit et coupe l'hypoténuse perpendiculairement)
alors on admet cette égalité
BC x AH = AC x AB
AH = (AC x AB) / BC = (4,8 x 3,6) / 6 = 17,28 / 6 = 2,88
AH = 2,88 cm
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.