Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
en fait il s'agit de trouver les racines 4e de -i
je suppose que tu as vu la forme trigonométrique des complexes...
-i = 0 - i module = M = V(0 + 1) = 1
soit a l'argument du complexe
il faut cosa = 0 et sina = -1 => a = 270° + k.360°
on a donc que -i = (cos270° + i.sin270°)
pour extraire les racines 4e d'un complexe on extrait la 4e puissance du module ce qui donne 1 et on divise l'argument par 4.
on a alors
a/4 = 67,5° + k.90°
ce qui nous donne
a1 = 67,5°=> x1 = cos67,5° + isin67,5°
a2 = 67,5+ 90° => x2 = cis157,5°
a3 = = 67,5+ 180°=> x3 = cis247,5°
a4 = = 67,5+ 270° => x4 = cis337,5°
si tu as besoin des formes algébriques (a + ib) tu calcules les cos et sin des angles à la machine.
Voilà
je suppose que tu as vu la forme trigonométrique des complexes...
-i = 0 - i module = M = V(0 + 1) = 1
soit a l'argument du complexe
il faut cosa = 0 et sina = -1 => a = 270° + k.360°
on a donc que -i = (cos270° + i.sin270°)
pour extraire les racines 4e d'un complexe on extrait la 4e puissance du module ce qui donne 1 et on divise l'argument par 4.
on a alors
a/4 = 67,5° + k.90°
ce qui nous donne
a1 = 67,5°=> x1 = cos67,5° + isin67,5°
a2 = 67,5+ 90° => x2 = cis157,5°
a3 = = 67,5+ 180°=> x3 = cis247,5°
a4 = = 67,5+ 270° => x4 = cis337,5°
si tu as besoin des formes algébriques (a + ib) tu calcules les cos et sin des angles à la machine.
Voilà
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.