Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour, j'aimerais savoir comment trouver les racines complexes du polynome X^4+i

Merci d'avance

Sagot :

en fait il s'agit de trouver les racines 4e de -i
je suppose que tu as vu la forme trigonométrique des complexes...
-i = 0 - i module = M = V(0 + 1) = 1 
soit a l'argument du complexe
il faut cosa = 0 et sina = -1 => a = 270° + k.360°
on a donc que -i = (cos270° + i.sin270°)
pour extraire les racines 4e d'un complexe on extrait la 4e puissance du module  ce qui donne 1 et on divise l'argument par 4.
on a alors
a/4 = 67,5° + k.90°
ce qui nous donne 
a1 = 67,5°=> x1 = cos67,5° + isin67,5°
a2 = 67,5+ 90° => x2 = cis157,5°
a3 = = 67,5+ 180°=> x3 = cis247,5°
a4 = = 67,5+ 270° => x4 = cis337,5°
si tu as besoin des formes algébriques (a + ib) tu calcules les cos et sin des angles à la machine.
Voilà

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.