Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Un pavé droit ABCDEFGH a pour base un rectangle ABCD de périmètre 12 cm et pour hauteur AE= 3AB

1) On pose AB= x. Justifier que [tex]0 \leq x \leq 6.[/tex]
2) Démontrer que le volume du pavé droit s'exprime, en fonction de x, par : V(x) =[tex]3 x^{2} (6-x)[/tex].
3)Conjecturer, avec la calculatrice, les variations du volume du pavé droit, quand x décrit l'intervalle (0;6). Quel semble être le maximum du volume? Pour quelle valeur de x est-il atteint?
4) Quel est le volume W du pavé droit quand ABCD est un carré? 
Déterminer une valeur approchée à [tex] 10^{-2} [/tex] près de l'autre valeur de x pour laquelle le pavé a aussi pour volume W.


Sagot :

Bonsoir,

1) Le périmètre est P = 2(Longueur+largeur)=12
P=2(AB+AC)=12
AB + AC = 6
x + AC = 6
x = 6 - AC
Comme [tex]AC\ge0,\ nous\ avons : x\le6 [/tex]
Il va de soit que l'on a : [tex]x\ge0[/tex] puisque x est une longueur.
Donc  [tex]0\le x\le 6[/tex]

2 Volume = AB x AC x AE où AB = x ; AC = 6-x (voir point 1) et AE = 3x.
Volume [tex]V(x) = x\times(6-x)\times (3x)\\\\V(x) = 3x^2(6-x)[/tex]

3) En donnant les valeurs à x depuis 0 jusque 6, la fonction semble être croissante sur [0;4] et décroissante sur [4;6].
Son maximum semble être égal à 96 pour x = 4.

4) ABCD est un carré
Si le périmètre vaut 12, alors le côté du carré égale 12/4 = 3 (cm).
Le volume W est égal à 3 * 3² * (6-3) = 3 * 9 * 3 = 81 (cm³)

Une des valeurs de x est donc 3.
En donnant des valeurs successives à x, on pourrait voir que l'autre valeur de x est environ 4,85.

V(4,84) = 81,52
V(4,85) = 81,15
V(4,86) = 80,78
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.