Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
[tex]y(x)=xe^{-x}\\\\y'(x)=x'e^{-x}+x(e^{-x})'\\\\y'(x)=1\times e^{-x}+x\times(-e^{-x})\\\\y'(x)=e^{-x}-xe^{-x}\\\\y'(x)=(1-x)e^{-x}[/tex]
Testons les 4 propositions en transformant les membres de droite et en vérifiant si les résultats sont égaux à y'.
[tex]A.\ y+e^{-x}=xe^{-x}+e^{-x}=(x+1)e^{-x}\neq y'\\\\B.\ (1+x)y=(1+x)xe^{-x}\neq y'\\\\C.\ (1-x)y=(1-x)xe^{-x}\neq y'\\\\D.\ -y+e^{-x}=-xe^{-x}+e^{-x}=(-x+1)e^{-x}=(1-x)e^{-x}=y'[/tex]
L'équation différentielle satisfaite par y(x) = xe^(-x) est la D, soit y' = -y + e^(-x)
Testons les 4 propositions en transformant les membres de droite et en vérifiant si les résultats sont égaux à y'.
[tex]A.\ y+e^{-x}=xe^{-x}+e^{-x}=(x+1)e^{-x}\neq y'\\\\B.\ (1+x)y=(1+x)xe^{-x}\neq y'\\\\C.\ (1-x)y=(1-x)xe^{-x}\neq y'\\\\D.\ -y+e^{-x}=-xe^{-x}+e^{-x}=(-x+1)e^{-x}=(1-x)e^{-x}=y'[/tex]
L'équation différentielle satisfaite par y(x) = xe^(-x) est la D, soit y' = -y + e^(-x)
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.