Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

On note A (x) l'aire de la surface imprimable
en calculant cette aire de deux façons différentes , montrer que A(x)=x2-6x+8 et que A(x)=(x-3)2-1
montrer que A(x)=(x-3)2-1
déterminer les dimensions de la carte telles que l'aire de la surface imprimable soit a égale à 8 cm , b égale à12 cm


Sagot :

Bonsoir,

la carte est un carré de côté égal à x.
La surface imprimable est alors un rectangle dont les dimensions sont (x-2) et (x-4).
L'aire de ce rectangle est A(x) = (x-2)(x-4)

a) En développant (x-2)(x-4), nous avons : 

A(x) = x² - 4x - 2x + 8
A(x) = x² - 6x + 8.

b) A(x) = x² - 6x + 8
A(x) = x² - 6x + 9 - 1
A(x) = (x² - 6x + 9) - 1
A(x) = (x-3)² - 1.

c) Si la surface imprimable doit être égale à 8 cm², alors il faut résoudre l'équation : A(x) = 8
x² - 6x + 8.=8
x² - 6x = 0
x(x - 6) = 0
x = 0 ou x - 6 = 0
x = 0 ou x = 6.
La valeur 0 est à exclure car x>0 (c'est une longueur).
Donc x = 6.
La carte sera un carré de côté égal à 6 cm.

d) Si la surface imprimable doit être égale à 12 cm², alors il faut résoudre l'équation : A(x) = 12.
(x-3)² - 1 = 12
(x-3)² = 12+1
(x - 3)² = 13
[tex]x-3=\sqrt{13}\ \ ou\ \ x-3=-\sqrt{13}\\\\x=3+\sqrt{13}\ \ ou\ \ x=3-\sqrt{13}\\\\x\approx 6,6\ \ ou\ \ x\approx -0,6[/tex]

La valeur  [tex]x=3-\sqrt{13}\approx -0,6[/tex]  est à rejeter car x>0.

Donc   [tex]x=3+\sqrt{13}\approx 6,6[/tex]

La carte sera un carré de côté égal à  [tex]x=3+\sqrt{13}\ cm\approx 6,6\ cm[/tex] 
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.