Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Bonsoir
1. Les coordonnées des sommets sont A ( 4 ; 5 ) ; B ( 8 ;6) ; C (6 ; 14 ) et D (2 ; 13)
2. Le quadrilatère ABCD est un parallélogramme puisque [tex]\overrightarrow{AB}=\overrightarrow{DC}[/tex]
En effet, [tex]\overrightarrow{AB}(8-4;6-5)\\\\\overrightarrox{AB}(4;1)\\\\et\\\\\overrightarrow{DC}(6-2;14-13)\\\\\overrightarrow{DC}(4;1)[/tex]
Dès lors :
[tex]AB=DC =\sqrt{(8-4)^2+(6-5)^2}\\\\AB= DC =\sqrt{4^2+1^2}\\\\AB= DC =\sqrt{16+1}\\\\AB= DC =\sqrt{17}[/tex]
et
[tex]AD= BC =\sqrt{(2-4)^2+(13-5)^2}\\\\AD= BC =\sqrt{(-2)^2+8^2}\\\\AD= BC =\sqrt{4+64}\\\\AD= BC =\sqrt{68}[/tex]
3) Le triangle ADC est rectangle en D.
En effet :
[tex]AD =\sqrt{68}\Longrightarrow AD^2=68[/tex]
[tex]DC =\sqrt{17}\Longrightarrow DC^2=17[/tex]
[tex]AC=\sqrt{(6-4)^2+(14-5)^2}\\AC=\sqrt{2^2+9^2}\\AC=\sqrt{4+81}\\AC=\sqrt{85}\Longrightarrow AC^2=85[/tex]
AC² = AD² + DC² car 85 = 68 + 17.
Par la réciproque du théorème de Pythagore, le triangle ADC est rectangle en D.
Le parallélogramme ABCD est donc un rectangle.
1. Les coordonnées des sommets sont A ( 4 ; 5 ) ; B ( 8 ;6) ; C (6 ; 14 ) et D (2 ; 13)
2. Le quadrilatère ABCD est un parallélogramme puisque [tex]\overrightarrow{AB}=\overrightarrow{DC}[/tex]
En effet, [tex]\overrightarrow{AB}(8-4;6-5)\\\\\overrightarrox{AB}(4;1)\\\\et\\\\\overrightarrow{DC}(6-2;14-13)\\\\\overrightarrow{DC}(4;1)[/tex]
Dès lors :
[tex]AB=DC =\sqrt{(8-4)^2+(6-5)^2}\\\\AB= DC =\sqrt{4^2+1^2}\\\\AB= DC =\sqrt{16+1}\\\\AB= DC =\sqrt{17}[/tex]
et
[tex]AD= BC =\sqrt{(2-4)^2+(13-5)^2}\\\\AD= BC =\sqrt{(-2)^2+8^2}\\\\AD= BC =\sqrt{4+64}\\\\AD= BC =\sqrt{68}[/tex]
3) Le triangle ADC est rectangle en D.
En effet :
[tex]AD =\sqrt{68}\Longrightarrow AD^2=68[/tex]
[tex]DC =\sqrt{17}\Longrightarrow DC^2=17[/tex]
[tex]AC=\sqrt{(6-4)^2+(14-5)^2}\\AC=\sqrt{2^2+9^2}\\AC=\sqrt{4+81}\\AC=\sqrt{85}\Longrightarrow AC^2=85[/tex]
AC² = AD² + DC² car 85 = 68 + 17.
Par la réciproque du théorème de Pythagore, le triangle ADC est rectangle en D.
Le parallélogramme ABCD est donc un rectangle.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.