Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
Bonsoir,
a) Suite géométrique de raison égale à 2 et de premier terme U1=3.
[tex]U_n=3\times 2^{n-1}\ \ (n\ge 1)[/tex]
b) Numérateur : Suite arithmétique de raison égale à 3 et de premier terme U1=1.
Terme général : [tex]V_n = 1 + (n-1)\times 3\ \ (n\ge 1)[/tex]
[tex]V_n = 1 + 3n - 3\ \ (n\ge 1)[/tex]
[tex]V_n = 3n - 2\ \ (n\ge 1)[/tex]
Dénominateur : Ce sont tous les premiers carrés parfaits des nombres naturels non nuls augmentés de 1.
Terme général : [tex]W_n = n^2 + 1\ \ (n\ge 1)[/tex]
Donc [tex]U_n= \dfrac{V_n}{W_n}\ \ (n\ge 1)[/tex]
[tex]U_n= \dfrac{3n-2}{n^2+1}\ \ (n\ge 1)[/tex]
a) Suite géométrique de raison égale à 2 et de premier terme U1=3.
[tex]U_n=3\times 2^{n-1}\ \ (n\ge 1)[/tex]
b) Numérateur : Suite arithmétique de raison égale à 3 et de premier terme U1=1.
Terme général : [tex]V_n = 1 + (n-1)\times 3\ \ (n\ge 1)[/tex]
[tex]V_n = 1 + 3n - 3\ \ (n\ge 1)[/tex]
[tex]V_n = 3n - 2\ \ (n\ge 1)[/tex]
Dénominateur : Ce sont tous les premiers carrés parfaits des nombres naturels non nuls augmentés de 1.
Terme général : [tex]W_n = n^2 + 1\ \ (n\ge 1)[/tex]
Donc [tex]U_n= \dfrac{V_n}{W_n}\ \ (n\ge 1)[/tex]
[tex]U_n= \dfrac{3n-2}{n^2+1}\ \ (n\ge 1)[/tex]
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.