Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.
Sagot :
Bonsoir,
a) Suite géométrique de raison égale à 2 et de premier terme U1=3.
[tex]U_n=3\times 2^{n-1}\ \ (n\ge 1)[/tex]
b) Numérateur : Suite arithmétique de raison égale à 3 et de premier terme U1=1.
Terme général : [tex]V_n = 1 + (n-1)\times 3\ \ (n\ge 1)[/tex]
[tex]V_n = 1 + 3n - 3\ \ (n\ge 1)[/tex]
[tex]V_n = 3n - 2\ \ (n\ge 1)[/tex]
Dénominateur : Ce sont tous les premiers carrés parfaits des nombres naturels non nuls augmentés de 1.
Terme général : [tex]W_n = n^2 + 1\ \ (n\ge 1)[/tex]
Donc [tex]U_n= \dfrac{V_n}{W_n}\ \ (n\ge 1)[/tex]
[tex]U_n= \dfrac{3n-2}{n^2+1}\ \ (n\ge 1)[/tex]
a) Suite géométrique de raison égale à 2 et de premier terme U1=3.
[tex]U_n=3\times 2^{n-1}\ \ (n\ge 1)[/tex]
b) Numérateur : Suite arithmétique de raison égale à 3 et de premier terme U1=1.
Terme général : [tex]V_n = 1 + (n-1)\times 3\ \ (n\ge 1)[/tex]
[tex]V_n = 1 + 3n - 3\ \ (n\ge 1)[/tex]
[tex]V_n = 3n - 2\ \ (n\ge 1)[/tex]
Dénominateur : Ce sont tous les premiers carrés parfaits des nombres naturels non nuls augmentés de 1.
Terme général : [tex]W_n = n^2 + 1\ \ (n\ge 1)[/tex]
Donc [tex]U_n= \dfrac{V_n}{W_n}\ \ (n\ge 1)[/tex]
[tex]U_n= \dfrac{3n-2}{n^2+1}\ \ (n\ge 1)[/tex]
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.