Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Devoir de première S.

Soit
f une fonction définie sur un intervalle I, vérifiant que pour tout
x appartient à  I,
on a f(x) appartient à J, et soit g une fonction définie sur J.
Soit 
[tex] x_{1} [/tex] , [tex] x_{2} [/tex] appartiennent à I avec [tex] x_{1} [/tex] [tex] \leq [/tex] [tex] x_{2} [/tex].

a) On suppose f croissante sur I, et g croissante sur J: montrer que g o f est croissante sur I.
b) Montrer que si f et g sont toutes deux décroissantes, g o f et croissante sur I.
c) Montrer que si f et g ont des sens de variation différents, g o f est décroissante sur I.


Sagot :

Si on a x < y alors, comme f est croissante, f(x) < f(y)
Si x < y alors, comme g est décroissante, on a g(x)>g(y) 
donc si x < y, on a alors g(f(x))>g(f(y)) , puisque g est décroissante.
Donc on sait que g(f(x))=(gof)(x) et , g(f(y)) = (gof)(y) donc on a bien (gof)(x)>(gof)(y)
Alors on peut bien dire que la fonction gof est décroissante sur I.
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.