Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour j'ai un exercice de Mathématiques assez complexe où je suis bloqué 

J'ai strictement rien compris 

 

On considère n carrés de côtés C1, C2, ... Cn 
Pour définir le "carré moyen" de ses carrés, on peut procéder de deux façons : 
- soit on considère que le carré moyen a pour côté la moyenne des côtés des n carrés ; on note C1 le carré ainsi obtenu ; 
- soit on considère que le "carré moyen" a pour aire la moyenne des aires des n carrés ; on note C2 le carré ainsi obtenu. 

a) Donner, pour chacune des deux définitions, le côté du "carré moyen"? 
b) Démontrer que aire (C2) - aire (C1) = ecart type au carré ou l'écart type de la série est celui des côtés des carrés 



Sagot :

Bonsoir,

On considère n carrés de côtés [tex]c_1, c_2, ... ,c_n[/tex]
Les aires respectives de ces carrés seront  [tex]c_1^2, c_2^2, ... ,c_n^2[/tex]

a) Le carré C1 aura des côtés égaux à  [tex]\dfrac{c_1+c_2+...+c_n}{n}[/tex]

Le carré C2 aura une aire égale à  [tex]\dfrac{c_1^2+c_2^2+...+c_n^2}{n}[/tex].
La mesure de ses côtés vaudra  [tex]\sqrt{\dfrac{c_1^2+c_2^2+...+c_n^2}{n}}[/tex]

b) L'aire de C1 vaudra : [tex](\dfrac{c_1+c_2+...+c_n}{n})^2[/tex]
Comme nous l'avons écrit dans le a), l'aire de C vaudra  [tex]\dfrac{c_1^2+c_2^2+...+c_n^2}{n}[/tex]..

Aire de C2 - Aire de C1 = [tex]\dfrac{c_1^2+c_2^2+...+c_n^2}{n} -(\dfrac{c_1+c_2+...+c_n}{n})^2[/tex]

Si X est une variable aléatoire exprimant les longueurs des n carrés initiaux, alors 

Aire de C2 - Aire de C1 = [tex]E[X^2]-[E(X)]^2[/tex], soit la variance de la série statistique composée des côtés des carrés initiaux, soit le carré de l'écart-type de la série statistique composée des côtés des carrés initiaux
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.