Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.
Sagot :
1) Pour que racine de f(x) soit définie il faut que x^2+2x+3>=0; delta =-8, donc g(x) est définie pour tout x
par contre h(x) est définie pour x>=0
2) h(x)= x+2racine(x)+3; prenons deux nombres a et b appartenant à [0;+inf[
tels que a<b; racine (a)<racine(b) (la fonction racine carrée est croissante.)
2 racine (a) +3 <2 racine(b) + 3; a+2 racine (a) +3 <b+ 2 racine(b) + 3; donc h(a)<h(b); conclusion a<b donc h(a)<h(b), donc la fonction est strictement croissante.
3) g'(x) = (2x+2)/2racine(x^2+2x+3) ; le dénominateur est toujours positif donc g’(x) est du signe de 2x+2. 2x+2>0 pour x>-1, 2x+2<0 pour x<-1 et g’(x) s’annule en x=-1. Donc g(x) est décroissante de –inf à -1, a un minimum en g(-1)=racine (2), et croissante de -1 a +inf.
par contre h(x) est définie pour x>=0
2) h(x)= x+2racine(x)+3; prenons deux nombres a et b appartenant à [0;+inf[
tels que a<b; racine (a)<racine(b) (la fonction racine carrée est croissante.)
2 racine (a) +3 <2 racine(b) + 3; a+2 racine (a) +3 <b+ 2 racine(b) + 3; donc h(a)<h(b); conclusion a<b donc h(a)<h(b), donc la fonction est strictement croissante.
3) g'(x) = (2x+2)/2racine(x^2+2x+3) ; le dénominateur est toujours positif donc g’(x) est du signe de 2x+2. 2x+2>0 pour x>-1, 2x+2<0 pour x<-1 et g’(x) s’annule en x=-1. Donc g(x) est décroissante de –inf à -1, a un minimum en g(-1)=racine (2), et croissante de -1 a +inf.
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.