Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonsoir,

voici mon dm:

 

Soit x la largeur d'un rectangle dont le périmètre vaut 32cm.

 

1) on désigne par f la fonction qui à x associe l'aire de ce rectangle. Déterminer f(x) et donner l'ensemble de définition de f. 

 

J'ai trouvé:   f(x)= x²-16x

je n'ai pas trouvé son ensemble de définition.

 

2) donner la forme canonique de f. 

 

J'ai trouvé: f(x)= (x-8)²-63

 

3) Pour quelle valeur de x l'aire du rectangle est-elle maximale? Quelle est alors cette aire?

 

je ne sais pas comment faire..

 

J'espère que quelqu'un pourra m'aider.

Merci d'avance!!

 

 

Sagot :

  1) on désigne par f la fonction qui à x associe l'aire de ce rectangle. Déterminer f(x) et donner l'ensemble de définition de f.   
 f(x)=x(16-x)
f(x)= -x²+16x
Df=[0;16]

2) donner la forme canonique de f.   
 f(x)=-x²+16x
f(x)=-x²+16x-64+64
f(x)= -(x-8)²+64

3) Pour quelle valeur de x l'aire du rectangle est-elle maximale? Quelle est alors cette aire?
f admet un maximum en 64
ce max est atteint si x=8
donc largeur=longueur=8
Aire=64
le rectangle est donc un Carré !
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.