Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour j'ai un exercice c'est urgent merci d'avance à ceux qui m'aideront xoxo :) 
 je ne comprends pas très bien :(
L'énoncé :
Dans un repère C orthonormé, on considère les points A(0;1) et M(x;y). M est un point de la droite d d'équation y = x-4.L'objectif est d'étudier les variations de la distance AM lorsque M parcourt la droite d, et en particulier de déterminer la distance AM minimale.
Questions :
1a) Exprimez la distance AM en fonction des coordonnées x et y de M. Détaillez vos calculs.
1b ) Justifiez que AM = [tex] \sqrt{2x^{2} -10x+25[/tex].
2. A chaque nombre réel x correspond un unique point M de la droite d et réciproquement, chaque point de d est associé un unique réel x.
      f : x [tex] \to [/tex]2x² -10x +25
a) Justifiez que f(x) existe quel que soit le nombre x.
b) Etablissez le tableau de variation de la fonction u définie sur IR par :
  u : x [tex] \to [/tex] 2x²-10x+25
c) Enoncez le théorème qui vous permet de déduire des variations de u celles de f.
d) Déduisez-en la valeur minimale de la distance AM.
Voila merci encore à ceux qui m'aideront parce que je n'ai vraiment rien compris ;(


Sagot :

je t'envoie la réponse en fichier joint.
View image danielwenin