Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Salut, j'ai deux questions d'un devoir maison que je ne comprend pas du tout est je voudrais savoir la réponse à ces questions avec une explication à celles-ci svp.

Merci d'avance ^^

 

En utilisant (1+x)², calculer Sn= 1+2+3+...+n ou n est un entier naturel.

En utilisant  (1+x)³, calculer Sn=1²+2²+3²+...+n² ou n est un entier naturel.

 


Sagot :

Bonsoir,
 Calculons [tex]S_n=1+2+3+...+n[/TEX]

[tex](1+x)^2 = 1 + 2\times x + x^2[/tex]
Dans cette égalité remplaçons x successivement par 1, 2, 3, ... , n.
[tex]\left\{\begin{array}l (1+1)^2=1+2\times 1 + 1^2\\(1+2)^2=1+2\times 2 + 2^2\\(1+3)^2=1+2\times 3 + 3^2\\...\\(1+n)^2=1+2\times n + n^2\end{array}\Longleftrightarrow \left\{\begin{array}l 2^2=1+2\times 1 + 1^2\\3^2=1+2\times 2 + 2^2\\4^2=1+2\times 3 + 3^2\\...\\(1+n)^2=1+2\times n + n^2\end{array}[/tex]
Ajoutons membre à membre ces équations entre elles.
[tex]2^2+3^2+4^2+...+(1+n)^2 = (1+1+1+...+1)+(2\times1+2\times2+2\times3+...+2\times n)+(1^2+2^2+3^2+...+n^2)\\2^2+3^2+4^2+...+(1+n)^2 = (1+1+1+...+1)+2(1+2+3+...+n)+(1^2+2^2+3^2+...+n^2)\\2^2+3^2+4^2+...+(1+n)^2 = n+2\times S_n+1^2+2^2+3^2+...+n^2[/tex]
Soustrayons dans chaque membre les termes identiques.
[tex](1+n)^2 = n+2\times S_n+1^2\\(1+n)^2 = 2\times S_n+(n+1)\\2S_n=(1+n)^2-(n+1)\\2S_n=(1+n)\times[(1+n)-1]\\2S_n=(1+n)\times n\\S_n = \dfrac{(1+n)\times n}{2}\\\boxed{1+2+3+...+n=\dfrac{n(n+1)}{2}}[/tex]
*************************************************************************************
 Calculons [tex]T_n=1^2+2^2+3^2+...+n^2[/tex]

[tex](1+x)^3 = 1^3 + 3\times 1^2\times x + 3\times 1\times x^2+x^3[/tex]
Dans cette égalité remplaçons x successivement par 1, 2, 3, ... , n.
[tex]\left\{\begin{array}l (1+1)^3 = 1^3 + 3\times 1^2\times 1 + 3\times 1\times 1^2+1^3\\(1+2)^3 = 1^3 + 3\times 1^2\times 2 + 3\times 1\times 2^2+2^3\\(1+3)^3 = 1^3 + 3\times 1^2\times 3 + 3\times 1\times 3^2+3^3\\...\\(1+n)^3 = 1^3 + 3\times 1^2\times n + 3\times 1\times n^2+n^3\end{array} [/tex]
[tex]\Longleftrightarrow \left\{\begin{array}l 2^3 = 1 + 3\times 1 + 3\times 1^2+1^3\\3^3 = 1 + 3\times 2 + 3\times 2^2+2^3\\4^3 = 1 + 3\times 3 + 3\times 3^2+3^3\\...\\(1+n)^3 = 1 + 3\times n + 3\times n^2+n^3\end{array}[/tex]
Ajoutons membre à membre ces équations entre elles, regroupons suivant la même méthode que dans la première partie et soustrayons dans chaque membre les termes identiques.
Il restera [tex](1+n)^3=n+3(1+2+3+...+n)+3(1^2+2^2+3^2+...+n^2) + 1\\(1+n)^3=n+3(1+2+3+...+n)+3\times T_n + 1[/tex]
Or, dans la 1ère partie, nous avons démontré que : [tex].1+2+3+...+n=\dfrac{n(n+1)}{2}[/tex]
Par conséquent : 
[tex](1+n)^3=n+\dfrac{3n(n+1)}{2}+3\times T_n + 1\\(1+n)^3=3\times T_n+\dfrac{3n(n+1)}{2}+n+ 1\\3T_n=(1+n)^3-\dfrac{3n(n+1)}{2}-(n+1)\\3T_n=(1+n)[(1+n)^2-\dfrac{3n}{2}-1]\\3T_n=(1+n)[1+2n+n^2-\dfrac{3n}{2}-1]\\3T_n=(1+n)(n^2+\dfrac{n}{2})\\3T_n=n(1+n)(n+\dfrac{1}{2})\\3T_n=n(1+n)(\dfrac{2n+1}{2})\\3T_n=n(1+n)(n+\dfrac{1}{2})\\T_n=n(1+n)(\dfrac{2n+1}{6})\\\boxed{T_n=\dfrac{n(n+1)(2n+1)}{6}}[/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.