Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

1+2+3+4+5+6+7+8+9+10+......+2005+2006+2007+2008+2009+2010+2011+2012+2013 quel sera le chiffre des unités de la somme de tous les nombres entiers de 1 a 2013? Il ne suffira pas simplement d écrire la solution à chaque question il faudra bien expliquer comment tu as trouve ta solution et écrire toutes les étapes de ta recherche . Voilà l énoncé merci pour votre aide moi je suis complètement perdu. Victor

Sagot :

Pour faciliter l'écriture et trouver une solution récurrente, on pose x = 2013 on peut alors écrire :
Somme = 1 + 2 + 3 + ... + (x-2) + (x-1) + x

si on inverse l'écriture ça donne :
Somme = x + (x-1) + (x-2) + ... + 3 + 2 + 1

Si on additionne ces 2 Sommes identiques mais écrit de façon différente pour avoir un élément qui se répète, ça donne :
2 fois Somme = (1+x) + (2+x-1) + (3+x-2) + ... + (x-2+3) + (x-1+2) + (x+1)
2 fois Somme = (x+1) + (x+1) + (x+1) + ... + (x+1) + (x+1) + (x+1)

si on met en facteur les (x+1) on a alors :
2 fois Somme = x(x+1)
donc :
Somme = x(x+1)/2

on peut maintenant remplacer x par 2013 et calculer facilement avec la calculatrice :
Somme = 2013(2013+1)/2 = 2013*2014/2 = 4054182/2 = 2027091

Donc l'unité de cette somme est 1.

En espérant t'avoir aidé.
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.