Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

J'ai réussi le 1a et le 1b mais je bloque pour le reste.
Une entreprise fabrique des fours micro-ondes pour une grande chaine de magasins. Elle peut en produire au maximum 300 par jours.
Le cout total de fabrication journalier, en euro, en fonction de la quantité q de fours fabriqués, est donné par la fonction C définie su [0;300] par :   C(q)=0,06q²+43,36q+2560.
Chaque fours micro-ondes produit est vendu 79 € .
1a) Quelle est la recette associé a la vente de 60 fours ? Quels sont les couts associés a la fabrication de ces 60 fours ? L'entreprise a t-elle réaliser des bénéfices ? FAIT 
2a) Exprimer la recette R(q), en euro, en fonction de la quantité q de fours fabriqués et vendu par jour
b) Montrer que le bénéfice journalier B(q), en euro, en fonction de la quantité q de fours fabriqués et vendus, est : B(q)=-0,06q²+35,64q-2560 .
3) résoudre l'inéquation B(q) > (ou égale) 0
4a) Montrer que pour tout réels q de [0;300] : B(q)=-0,06(q-297)²+2732,54
 b) En déduire que le bénéfice admet un maximum dont on donnera la valeur et la quantité associée de fours fabriqués et vendus. 


Voila merci d'avance 



Sagot :

Bonjour
comme la question 1 est faite alors
C(q) = 0.06q²+43.36q+2560      pour  0 < q < 300 
2)
si le prix de vente unitaire est de 79 euros
R(q) = 79q 
B(q) = C(q) - R(q) 
B(q) = 79q - (0.06q²+43.36q+2560 )
B(q) = -0.06q² + 35.64q - 2560 
3)
Résoudre B(q) > 0 revient à trouver les valeurs pour lesquelles l'entreprise fait du bénéfice
-0.06q²+35.64q -2560 > 0 
delta = 655.8  soit Vdelta = 25.6 
q ' = 83  car l'autre solution est hors encadrement
B(q) > 0      pour q > 83 
4)
B(q) = -0.06 ( q - 297)² + 2732.54 
B(q) = -0.06 ( q² -594q +88209) + 2732.54
B(q) = -0.06q² +35.64q - 2560      ( donc vérification effectuée ) 
donc B(q) maximal pour q = 297
B(297) = -0.06(297) +35.64(297) - 2560 = -17.82 + 10585.08 - 2560 = 8007.26 euros

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.