Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Le comptable d'une entreprise de transport international réalise une étude prévisionnelle.
Pour cela, il étudie l'évolution du montant des charges de l'entreprise et celle des recettes entre 2013 et 2023.
PARTIE 1: Etude des recettes.
Soit g la fonction représentant le montant des recettes de l'entreprise.
On défini g sur l'intervalle [0;11] par:
g(x)= -1500x ( au carré ) + 21000x + 120 000 ou x représente le rang de l'année dans la période 2013 à 2023.
1) Le comptable veut déterminer en qu'elle année les recettes de l'entreprise sont maximales.
a) Calculer pour qu'elle valeur du rang x la fonction g atteint un maximum? SVP.



Sagot :

Bonjour,

g(x) =  -1500x² + 21000x + 120 000
g'(x) = -3000x + 21000

g'(x) = 0  si x = 7.
g'(x) > 0 si 0 ≤ x < 7 ==> g est croissante sur [0 ; 7[
g'(x) < 0 si 7 < x ≤ 11 ==> g est décroissante sur ]7 ; 11]

g admet donc un maximum si x = 7.
Le rang est alors égal à 7.

Le rang 0 correspond à 2013 ==> le rang 7 correspond à 2020.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.