Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.
Sagot :
u et v sont deux fonctions définies sur l'intervalle I
a) Si u est croissante sur I et v décroissante sur I, alors la somme de u+v est décroissante sur I
faux : soit u(x)=x et v(x)=1/x donc (u-v)(x)=x+1/x
u est croissante sur [1;2]
v est décroissante sur [1;2]
u+v est croissante sur [1;2]
b) Si u et v sont croissantes et positives sur I, alors le produit uv est une fonction croissante sur I.
vrai ; soit u et croissante et positive sur I
donc u(x)<0 ; v(x)>0 ; u'(x)>0 ; v'(x)>0
(uv)'(x)=u'(x)*v(x)+u(x)*v'(x)
donc (uv)'(x)>0
uv est croissante sur I
a) Si u est croissante sur I et v décroissante sur I, alors la somme de u+v est décroissante sur I
faux : soit u(x)=x et v(x)=1/x donc (u-v)(x)=x+1/x
u est croissante sur [1;2]
v est décroissante sur [1;2]
u+v est croissante sur [1;2]
b) Si u et v sont croissantes et positives sur I, alors le produit uv est une fonction croissante sur I.
vrai ; soit u et croissante et positive sur I
donc u(x)<0 ; v(x)>0 ; u'(x)>0 ; v'(x)>0
(uv)'(x)=u'(x)*v(x)+u(x)*v'(x)
donc (uv)'(x)>0
uv est croissante sur I
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.