Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.
Sagot :
Bonjour,
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.