Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Bonjour,
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.