Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonjour,
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
1) Je suppose que tu as placé les points.
2) K est le milieu de [LM] car les coordonnées de K (2;2) sont égales à la moyenne arithmétique des coordonnées de L (6;1) et de M (-2;3).
En effet :
[tex]2=\dfrac{6+(-2)}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
et
[tex]2=\dfrac{1+3}{2}\ \ \ \ \ \ (2=\dfrac{4}{2})[/tex]
Nous aurions également pu démontrer, par les coordonnées, que [tex]\vec{LK}=\vec{KM}[/tex]
3) Construction de deux médiatrices de deux côtés du triangle LMU.
Le centre du cercle circonscrit est le point d'intersection de ces médiatrices.
4) Le centre du cercle paraît être le point K.
5) On en déduirait que le triangle LMU est rectangle en U puisque le côté [ML] du triangle LMU est le diamètre du cercle circonscrit (Si l’un des côtés d’un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et le diamètre du cercle circonscrit est alors son hypoténuse).
6) Appliquons la réciproque du théorème de Pythagore.
ML² = [6-(-2)]² + (1-3)² = (6+2)² + (-2)² = 64 + 4 = 68.
MU² = [1-(-2)]² + (6-3)² = (1+2)² + 3² = 9 + 9 = 18.
UL² = (6-1)² + (1-6)² = 5² + (-5)² = 25 + 25 = 50.
68 = 18 + 50
ML² = MU² + UL².
La réciproque du théorème de Pythagore peut donc s'appliquer.
Le triangle LMU est rectangle en U.
Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.