Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, j'ai un devoir maison à rendre pour mardi avec un exercice dont je n'ai pas trop compris le voici : 

http://img.funky-emu.net/uploads/10463320131106-161044-1-.jpg
La figure se trouve sur le lien ci-dessus.


ABCDEFGH est un cube de côté 6 cm. A tout réel x ≥ 0, on associe le point M de la demi droite [AB) tel que BM = x, M n'étant pas entre A et B.

1. Justifier que les droites (HM) et (BG) sont sécantes.
On appel P leur point d'intersection et on s'intéresse à la fonction f qui à x associe f(x) = BP. 

J'aimerai avoir, si possible, une piste sur cette question car je ne vois pas trop comment pourrait-on justifier que deux droites sont sécantes.

Merci.

Sagot :

ABCDEFGH est un cube de côté 6 cm. A tout réel x ≥ 0, on associe le point M de la demi droite [AB) tel que BM = x, M n'étant pas entre A et B.

1. Justifier que les droites (HM) et (BG) sont sécantes.
(HG) // (AB)
donc (HG) et (AB) sont coplanaires
donc (HGBA) défini un plan

M appartient à (AB)
donc M appartient au plan (HGBA)
donc (HM) est incluse dans le plan (HGBA)
or (BG) est incluse dans ce même plan
donc (HM) et (BG) sont coplanaires

de plus (BM) // (HG)
donc (HM) et (BG) sont sécantes en P

2)On appelle P leur point d'intersection et on s'intéresse à la fonction
 f qui à x associe f(x) = BP.
d'après le th de Thalès
BP/PG=MP/PH=BM/HG
donc f(x)=PG*BM/GH

aussi BP/AH=MB/MA
donc BP=x/6*6*rac(2)=x*rac(2)
donc PG=6*rac(2)-x*rac(2)=(6-x)*rac(2)

donc f(x)=rac(2)*(6-x)*x/6

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.