Answered

Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

helppp !!On considère la suite définie par Un = ( ( (3^n)-(2^n) ) / ( (3^n)+(2^n) ) )  +  ( ( (3^n)+(2^n) ) / ( (3^n)-(2^n) ) ) .Montrer que cette suite converge et trouver sa limite.

Sagot :

 Un = ( ( (3^n)-(2^n) ) / ( (3^n)+(2^n) ) )  +  ( ( (3^n)+(2^n) ) / ( (3^n)-(2^n) ) )
soit a=3^n et b=2^n
donc U(n)=(a-b)/(a+b)+(a+b)/(a-b)
              =((a-b)²+(a+b)²)/((a+b)(a-b))
              =(2a²+2b²)/(a²-b²)
              =2(a²+b²)/(a²-b²)
              =2(3^(2n)+2^(2n))/(3^(2n)-2^(2n))
              =2(9^n+4^n)/(9^n-4^n)
              =2(1+(4/9)^n)/(1-(4/9)^n)
or V(n)=(4/9)^n converge vers 0 (suite géométrique de raison q où 0<q<1)
donc U(n) converge vers L=2*(1+0)/(1-0)=2
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.