Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Calculer la primitive de (sin x/ la racine carré de cos x?

Sagot :

[tex] \frac{sin(x)}{ \sqrt{cos(x)} }= \frac{2sin(x)}{2 \sqrt{cos(x)} } \ \ \ \ \texttt{forme : } \frac{u'}{2 \sqrt{u} }-\ \textgreater \ \sqrt{u} \\\\ \int\limits { \frac{sin(x)}{ \sqrt{cos(x)} }} \, dx = \int\limits {\frac{2sin(x)}{2 \sqrt{cos(x)} }} \, dx =2 \int\limits\frac{sin(x)}{2 \sqrt{cos(x)} } {x} \, dx =2\times- \sqrt{cos(x)} [/tex]

on en déduit la primitive:
[tex]=-2 \sqrt{cos(x)} [/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.