Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Calculer la primitive de (sin x/ la racine carré de cos x?

Sagot :

[tex] \frac{sin(x)}{ \sqrt{cos(x)} }= \frac{2sin(x)}{2 \sqrt{cos(x)} } \ \ \ \ \texttt{forme : } \frac{u'}{2 \sqrt{u} }-\ \textgreater \ \sqrt{u} \\\\ \int\limits { \frac{sin(x)}{ \sqrt{cos(x)} }} \, dx = \int\limits {\frac{2sin(x)}{2 \sqrt{cos(x)} }} \, dx =2 \int\limits\frac{sin(x)}{2 \sqrt{cos(x)} } {x} \, dx =2\times- \sqrt{cos(x)} [/tex]

on en déduit la primitive:
[tex]=-2 \sqrt{cos(x)} [/tex]
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.