Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
1) voir fichier joint
2.a)
Calcul BD
Les droites (BC) et (DC) sont perpendicualaires.
Donc le traingle BCD est rectangle en C.
D'après le théorème de Pythagore
BD² = BC² + DC²
DC = AB = 12
BC = AD = 9
BD² = 9² + 12²
BD² = 81 + 144
BD² = 225
d'où
BD = V(225) ou V se lit racine carré de
BD = 15 cm
b. Calcul CN
Les droites (BP) et (DN) sont sécantes en C.
Les points B, C et P, ainsi que D, C et N sont alignés dans cet ordre.
D'après le théorème de Thalès :
PN/BD = CP/BC = CN/DC
P est le symétrique de M par rapport à C
donc CP = CM
or CM = BC-BM
CP = 9-3
CP = 6
CP/BC = CN/DC
6/9=CN/12
CN = 12*6/9
CN = 8 cm
3) Calcul DN
Les points D, C et N sont alignés dans cet ordre,
donc
DN = DC + CN
DN = 12 + 8
DN = 20 cm
4)Calcul MN
Les droites (BC) et (DC) sont perpendicualaires.
M est un point de (BC) et N un point de (DC)
Donc le triangle MCN est recangle en C.
D'après le théorème de Pythagore :
MN² = MC² + CN²
MN² = 6² + 8²
MN² = 36 + 64
MN² = 100
D'où
MN = V(100)
MN = 10 cm
2.a)
Calcul BD
Les droites (BC) et (DC) sont perpendicualaires.
Donc le traingle BCD est rectangle en C.
D'après le théorème de Pythagore
BD² = BC² + DC²
DC = AB = 12
BC = AD = 9
BD² = 9² + 12²
BD² = 81 + 144
BD² = 225
d'où
BD = V(225) ou V se lit racine carré de
BD = 15 cm
b. Calcul CN
Les droites (BP) et (DN) sont sécantes en C.
Les points B, C et P, ainsi que D, C et N sont alignés dans cet ordre.
D'après le théorème de Thalès :
PN/BD = CP/BC = CN/DC
P est le symétrique de M par rapport à C
donc CP = CM
or CM = BC-BM
CP = 9-3
CP = 6
CP/BC = CN/DC
6/9=CN/12
CN = 12*6/9
CN = 8 cm
3) Calcul DN
Les points D, C et N sont alignés dans cet ordre,
donc
DN = DC + CN
DN = 12 + 8
DN = 20 cm
4)Calcul MN
Les droites (BC) et (DC) sont perpendicualaires.
M est un point de (BC) et N un point de (DC)
Donc le triangle MCN est recangle en C.
D'après le théorème de Pythagore :
MN² = MC² + CN²
MN² = 6² + 8²
MN² = 36 + 64
MN² = 100
D'où
MN = V(100)
MN = 10 cm
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.