Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
a) Un cône de révolution a pour volume le tiers du volume du cylindre de révolution construit sur sa base et ayant la même hauteur.
Si r est le rayon de la base, on a aussi V = 1\3 x pi x r² x h.
V= 1/3 x 3,14 x 1² x 4
V = (1 x 3,14 x 1 x 4)/3 = 4,19 cm3
b)P = diamètre x pi
P = 2 x 3,14
P= 6,28 cm
c) Avec le rayon du cercle de base et la hauteur on peut calculer via Pythagore
Le rayon du patron correspondant à l'hypoténuse du triangle rectangle ainsi formé ou l'arête du cône.
rayon du patron² = hauteur² + rayon² = racine de 4² + 1² = racine de 17 = 4,12
Pour l'angle on sait que la longueur d'un arc de cercle est proportionnelle à l'angle au centre qui correspond à cet arc.
angle° = 180° x 2pi rayon / pi 4,1
donc anglé° = rayon / 4,1 x 360°
angle = 1 / 4,1 x 360 = 87, 80 °
d) L’aire de la surface latérale d’un cône de révolution est égale au demi-produit du périmètre du cercle de base par la longueur de la génératrice (ici rayon du patron = 4,12).
S = pi r x 4,12 = 3,14 x 4,12 = 12,93 cm²
On rajoute l'aire de la base et on obtient l'aire totale.
aire totale = 12,93 + (1 x 1 x 3,14) = 12,93 + 3,14 = 16,07 cm²
Si r est le rayon de la base, on a aussi V = 1\3 x pi x r² x h.
V= 1/3 x 3,14 x 1² x 4
V = (1 x 3,14 x 1 x 4)/3 = 4,19 cm3
b)P = diamètre x pi
P = 2 x 3,14
P= 6,28 cm
c) Avec le rayon du cercle de base et la hauteur on peut calculer via Pythagore
Le rayon du patron correspondant à l'hypoténuse du triangle rectangle ainsi formé ou l'arête du cône.
rayon du patron² = hauteur² + rayon² = racine de 4² + 1² = racine de 17 = 4,12
Pour l'angle on sait que la longueur d'un arc de cercle est proportionnelle à l'angle au centre qui correspond à cet arc.
angle° = 180° x 2pi rayon / pi 4,1
donc anglé° = rayon / 4,1 x 360°
angle = 1 / 4,1 x 360 = 87, 80 °
d) L’aire de la surface latérale d’un cône de révolution est égale au demi-produit du périmètre du cercle de base par la longueur de la génératrice (ici rayon du patron = 4,12).
S = pi r x 4,12 = 3,14 x 4,12 = 12,93 cm²
On rajoute l'aire de la base et on obtient l'aire totale.
aire totale = 12,93 + (1 x 1 x 3,14) = 12,93 + 3,14 = 16,07 cm²
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.