Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dévouée d'experts sur notre plateforme de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
1) [tex]A=(1+i)(2+i)=(2+2i+i-1)=1+3i[/tex]
ici tu développe de façon normale en tenant compte du fait que i² = -1 .
[tex]B= \frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1-2i-1}{1+1} = \frac{-2i}{2} =-i[/tex]
ici tu multiplie le haut et le bas par le conjugué du nombre du bas (le conjugué de 1+i c'est 1-i)
[tex]C=(1+i)^{2}=1+2i-1=2i[/tex]
ici tu développe normalement aussi
2) Pour la forme trigonométrique je connais juste la formule mais j'l'ai jamais vraiment fais en cours. [tex]z=|z|.(cos(\theta)+sin(\theta))[/tex] avec [tex]|z| = \sqrt{x^{2}+y{2}} [/tex]
[tex]A= \sqrt{1^{2} +1 ^{2} } .(cos\theta+sin\theta)[/tex]
[tex]= \sqrt{1+1} .(cos\theta+sin\theta)[/tex]
et d'après le cours[tex]cos\theta= \frac{x}{ \sqrt{x^{2}+y{2}}} [/tex] et[tex]sin\theta= \frac{y}{ \sqrt{x^{2}+y^{2}}}[/tex]
et ensuite je sais pas trop faire :/
Exo IV)
[tex]z^{2} +4z+5=0[/tex]
je calcule le discriminant
[tex]\Delta=4^{2}-4(1)(5)=16-20=-4[/tex]
[tex]\Delta[/tex] est négatif, il y a donc 2 solutions complexes conjuguées
[tex] z_{1} = \frac{-4+ i\sqrt{-(-4)} }{2(1)}= \frac{-4+2i}{2} =-2+i[/tex]
[tex] z_{2}= \bar{z _{1} }=-2-i[/tex]
L'équation [tex]z^{2} +4z+5=0[/tex] à donc deux solutions : S={-2-i ; -2+i}
ici tu développe de façon normale en tenant compte du fait que i² = -1 .
[tex]B= \frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1-2i-1}{1+1} = \frac{-2i}{2} =-i[/tex]
ici tu multiplie le haut et le bas par le conjugué du nombre du bas (le conjugué de 1+i c'est 1-i)
[tex]C=(1+i)^{2}=1+2i-1=2i[/tex]
ici tu développe normalement aussi
2) Pour la forme trigonométrique je connais juste la formule mais j'l'ai jamais vraiment fais en cours. [tex]z=|z|.(cos(\theta)+sin(\theta))[/tex] avec [tex]|z| = \sqrt{x^{2}+y{2}} [/tex]
[tex]A= \sqrt{1^{2} +1 ^{2} } .(cos\theta+sin\theta)[/tex]
[tex]= \sqrt{1+1} .(cos\theta+sin\theta)[/tex]
et d'après le cours[tex]cos\theta= \frac{x}{ \sqrt{x^{2}+y{2}}} [/tex] et[tex]sin\theta= \frac{y}{ \sqrt{x^{2}+y^{2}}}[/tex]
et ensuite je sais pas trop faire :/
Exo IV)
[tex]z^{2} +4z+5=0[/tex]
je calcule le discriminant
[tex]\Delta=4^{2}-4(1)(5)=16-20=-4[/tex]
[tex]\Delta[/tex] est négatif, il y a donc 2 solutions complexes conjuguées
[tex] z_{1} = \frac{-4+ i\sqrt{-(-4)} }{2(1)}= \frac{-4+2i}{2} =-2+i[/tex]
[tex] z_{2}= \bar{z _{1} }=-2-i[/tex]
L'équation [tex]z^{2} +4z+5=0[/tex] à donc deux solutions : S={-2-i ; -2+i}
Je t'envoie le résultat de mes cogitations,j'espère que c'est correct.
ça m'a pris as mal de temps...
ça m'a pris as mal de temps...
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.