Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

On considère la suite (Un) Uo= 0 et, pour tout entier n, Un+1= 3Un-2n+3
1. Calculer U1 et U2
2. a.Démontrer par récurrence que, pour tout entier naturel n, Un > ou égal à n
    b. En déduire la suite de la limite (Un)
3. Démontrer que la suite est croissante.
4. Soit la suite (Vn) définie, pour tout entier naturel n, par Vn= Un-n+1
    a. Démonter que la suite (Vn) est une suite géométrique.
    b. En deduire que, pour tout entier naturel n, Un= 3^n+n-1
5. Soit p un entier naturel non nul.
    a. Pourquoi peut-on affirmer qu'il existe au moins un entier no tel que, pour tout n > ou égal no Un > ou égal à 10^p
      On s'interesse maintenant au plus petit entier no
    b. Justifier que no< ou égal 3p
    c. Déterminer à l'aide de la calculatrice cet entier no pour la valeur p=3
    d. Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier no tel que pour tout n > ou égal, no, on ait Un > ou égal 10^p 

^ : Puissance

Merci de votre d'aide


Sagot :

1.  Un+1=3Un-2n+3 on sait que U0=0  alors
U1=3*0-2*0+3
U1=3

U2=3*3-2*1+3
U2=4 

Initialisation: D'apres l'énoncé on sait que U0=0
On démontre que la la propriété est vraie pour la 1ere valeur possible de n.
On suppose que la propriété est vraie par un entier p[tex] \geq 0[/tex] c'est à dire Up \geq p

On démontre que la propriété reste vraie par l'entier p+1[tex] \geq 0[/tex]
Up+1 =3Un-2n+3

Up[tex] \geq [/tex] p
3up \geq  3p
3Up-2p  \geq 3p-2p
3Up-2p+3  \geq p+3

La propriété est vrai pour n=0 et est hereditaire, elle est donc vraie pour tout n.
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.