Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
La fonction carrée est croissante sur 0; plus l'infini, donc si racine carré de x < x+1/3 alors x<(x+1/3) au carré
La réciproque est aussi vrai puisque la fonction racine carrée est aussi croissante sur 0, plus l'infini.
Reste a démontrer que x<(x+1/3)^2 est vraie sur l'intervalle. Donc étudions le signe de (x+1/3)^2 - x = x^2 -x/3+1/9
delta négatif: pas de racine, donc l'expression est du signe de a qui est positif.
donc
x<(x+1/3)^2 est vraie donc la première inégalité est vraie.
La réciproque est aussi vrai puisque la fonction racine carrée est aussi croissante sur 0, plus l'infini.
Reste a démontrer que x<(x+1/3)^2 est vraie sur l'intervalle. Donc étudions le signe de (x+1/3)^2 - x = x^2 -x/3+1/9
delta négatif: pas de racine, donc l'expression est du signe de a qui est positif.
donc
x<(x+1/3)^2 est vraie donc la première inégalité est vraie.
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.