Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Soit un triangle ABC rectangle en A tel que :

AB=4 et AC=6.

On considère un point M appartenant au segment [AB].

La parallèle à la droite (AC) passant par M coupe le segment [BC] en N.

Vous devez déterminer la position du point M pour que l'aire du triangle MNB soit égale à la moitié de l'aire du triangle ABC ????? Aidez moi SVP : /



Sagot :

Soit un triangle ABC rectangle en A tel que : AB=4 et AC=6.
soit AM=x
aire(MNB)=(4-x)*MN/2
d'après le th de Thalès : (4-x)/4=MN/6
donc MN=3/2(4-x)
donc aire(MNB)=3/4(4-x)²
or aire(ABC)=4*6/2=12
donc 3/4(4-x)²=6
donc (4-x)²=8
donc x=4-rac(8)
donc x environ égal à 1,171
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.