Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Une certaine semaine, la semaine de rang 0, un homme et une femme se rencontrent. S'ils s'apprécient, c'est avec une probabilité de 1/10. La nième semaine après leur rencontre (n>1), ils s'apprécient avec une probabilité de 9/10, s'ils se sont appréciés la semaine précédente, et ils s'apprécient avec une probabilité de 1/50 s'ils ne sont pas appréciés la semaine précédente. On note An l'évènement : "ils s'apprécient la nième semaine". On note pn et qn les probabilités respectives de An et Anbarre.

 

1) Que valent p0 et q0 

2) a) construire un arbre de probabilités concernant les semaines n et n+1

b) Justifier que pn+1 = 9/10pn + 1/50qn

c) En déduire, que pour tout entier naturel n, pn+1 =22/25pn + 1/50

 

3) On considère la suite (vn) définie pour tout entier naturel n par vn =pn-1/6

a) prouver que cette suite est géométrique. On en donnera la raison et le premier terme

b) En déduire, l'expession de vn puis celle de pn en fonction de n


4) La suite (pn) est-elle convergeante ?

 

Se serait pour la question 2)c et 3)a s'il vous plait.

Merci par avance :) 



Sagot :

1) Que valent p0 et q0 
p(0)=1 et q(0)=0

2) a) construire un arbre de probabilités concernant les semaines n et n+1
arbre pondéré laissé au lecteur...

b) Justifier que pn+1 = 9/10pn + 1/50qn
p(n+1)=P(An+1)=P(An)*P(An+1/An)+P(An barre)*P(An+1/An barre)
         =9/10*P(An)+1/50*P(An barre)
         =9/10p(n)+1/50q(n)

c) En déduire, que pour tout entier naturel n, pn+1 =22/25pn + 1/50  
p(n+1)=9/10p(n)+1/50q(n)
         =9/10p(n)+1/50(1-p(n))
         =(9/10-1/50)p(n)+1/50
         =22/25p(n)+1/50

3) On considère la suite (vn) définie pour tout entier naturel n par vn =pn-1/6
a) prouver que cette suite est géométrique. On en donnera la raison et le premier terme
v(n+1)=p(n+1)-1/6
        =22/25p(n)+1/50-1/6
        =22/25p(n)-11/75
        =22/25(p(n)-1/6)
        =22/25v(n)
donc v est géométrique de raison q=22/25

b) En déduire, l’expression de vn puis celle de pn en fonction de n
v(n)=v(0)*q^n
     =5/6*(22/25)^n

p(n)=5/6*(22/25)^n+1/6

4) La suite (pn) est-elle convergente ?

v est convergente vers 0 car 0<22/25<1
donc p est convergente vers 1/6
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.