Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Une certaine semaine, la semaine de rang 0, un homme et une femme se rencontrent. S'ils s'apprécient, c'est avec une probabilité de 1/10. La nième semaine après leur rencontre (n>1), ils s'apprécient avec une probabilité de 9/10, s'ils se sont appréciés la semaine précédente, et ils s'apprécient avec une probabilité de 1/50 s'ils ne sont pas appréciés la semaine précédente. On note An l'évènement : "ils s'apprécient la nième semaine". On note pn et qn les probabilités respectives de An et Anbarre.

 

1) Que valent p0 et q0 

2) a) construire un arbre de probabilités concernant les semaines n et n+1

b) Justifier que pn+1 = 9/10pn + 1/50qn

c) En déduire, que pour tout entier naturel n, pn+1 =22/25pn + 1/50

 

3) On considère la suite (vn) définie pour tout entier naturel n par vn =pn-1/6

a) prouver que cette suite est géométrique. On en donnera la raison et le premier terme

b) En déduire, l'expession de vn puis celle de pn en fonction de n


4) La suite (pn) est-elle convergeante ?

 

Se serait pour la question 2)c et 3)a s'il vous plait.

Merci par avance :) 



Sagot :

1) Que valent p0 et q0 
p(0)=1 et q(0)=0

2) a) construire un arbre de probabilités concernant les semaines n et n+1
arbre pondéré laissé au lecteur...

b) Justifier que pn+1 = 9/10pn + 1/50qn
p(n+1)=P(An+1)=P(An)*P(An+1/An)+P(An barre)*P(An+1/An barre)
         =9/10*P(An)+1/50*P(An barre)
         =9/10p(n)+1/50q(n)

c) En déduire, que pour tout entier naturel n, pn+1 =22/25pn + 1/50  
p(n+1)=9/10p(n)+1/50q(n)
         =9/10p(n)+1/50(1-p(n))
         =(9/10-1/50)p(n)+1/50
         =22/25p(n)+1/50

3) On considère la suite (vn) définie pour tout entier naturel n par vn =pn-1/6
a) prouver que cette suite est géométrique. On en donnera la raison et le premier terme
v(n+1)=p(n+1)-1/6
        =22/25p(n)+1/50-1/6
        =22/25p(n)-11/75
        =22/25(p(n)-1/6)
        =22/25v(n)
donc v est géométrique de raison q=22/25

b) En déduire, l’expression de vn puis celle de pn en fonction de n
v(n)=v(0)*q^n
     =5/6*(22/25)^n

p(n)=5/6*(22/25)^n+1/6

4) La suite (pn) est-elle convergente ?

v est convergente vers 0 car 0<22/25<1
donc p est convergente vers 1/6
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.