Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonjour,
1)On sait que (EH) et (AB) sont perpendiculaires (en effet, dans un triangle équilatéral, la médiane et la hauteur issues d'un sommet sont confondues) ; le triangle EAH est rectangle en H, d'où :
[tex]EA^2 = AH^2+EH^2\\ EH = \sqrt{EA^2-AH^2 } = \frac{\sqrt 3}{2}[/tex]
Même chose pou KF, qui a donc la même longueur.
3)Je suis d'accord avec tes résultats. Je pense qu'il ne faut pas forcément justifier quand les résultats sont évidents, mais on peut faire, par exemple, pour le point E :
On a (EH) // (AD) et
[tex]EH = \frac {\sqrt 3}2 [/tex]
et (AH) // (AB) et AH = 1/2 et (EH) et (AH) perpendiculaires.
On en déduit les coordonnées du point E.
Je suis d'accord avec tes résultats, sauf pour D(0;1).
4)Calculons les coordonnées des vecteurs DE et EF.
[tex]\vec{DE} \left(\begin{array}{c}x_E - x_D\\ y_E-y_D}\end{array}\right)\\ \vec{DE} \left(\begin{array}{c}\frac12 -0\\ \frac{\sqrt 3}{2}-1}\end{array}\right)\\ \vec{DE} \left(\begin{array}{c}\frac12\\ \frac{\sqrt 3}{2}-1}\end{array}\right)\\[/tex]
[tex]\vec{EF} \left(\begin{array}{c}x_F - x_E\\ y_F-y_E}\end{array}\right)\\ \vec{EF} \left(\begin{array}{c}1+\frac{\sqrt3 }{2}- \frac 12 \\ \frac 12-\frac{\sqrt 3}{2}}\end{array}\right)\\ \vec{EF} \left(\begin{array}{c}\frac 12+\frac{\sqrt3 }{2} \\ \frac 12-\frac{\sqrt 3}{2}}\end{array}\right)[/tex]
Deux vecteurs u(x,y) et v(x',y') (avec les flèches) sont colinéaires si et seulement si leurs coordonnées vérifient :
xy'-y'x = 0
On calcule :
[tex]\frac 12 \left(\frac 12 - \frac{\sqrt 3}{2}\right) - \left(\frac{\sqrt 3}{2} -1\right)\left(\frac 12 + \frac{\sqrt 3}{2}\right) = \frac 14 - \frac{\sqrt 3}{4} - \left(\frac{\sqrt 3}{4}+\frac 34 -\frac 12 -\frac{\sqrt 3}{2}\right)\\ =\frac 14 -\frac{\sqrt 3}{4} -\left(-\frac{\sqrt 3}{4}+\frac 14\right) = 0[/tex]
Les vecteurs DE et EF (avec les flèches) sont colinéaires ; les points D, E et F sont alignés.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
1)On sait que (EH) et (AB) sont perpendiculaires (en effet, dans un triangle équilatéral, la médiane et la hauteur issues d'un sommet sont confondues) ; le triangle EAH est rectangle en H, d'où :
[tex]EA^2 = AH^2+EH^2\\ EH = \sqrt{EA^2-AH^2 } = \frac{\sqrt 3}{2}[/tex]
Même chose pou KF, qui a donc la même longueur.
3)Je suis d'accord avec tes résultats. Je pense qu'il ne faut pas forcément justifier quand les résultats sont évidents, mais on peut faire, par exemple, pour le point E :
On a (EH) // (AD) et
[tex]EH = \frac {\sqrt 3}2 [/tex]
et (AH) // (AB) et AH = 1/2 et (EH) et (AH) perpendiculaires.
On en déduit les coordonnées du point E.
Je suis d'accord avec tes résultats, sauf pour D(0;1).
4)Calculons les coordonnées des vecteurs DE et EF.
[tex]\vec{DE} \left(\begin{array}{c}x_E - x_D\\ y_E-y_D}\end{array}\right)\\ \vec{DE} \left(\begin{array}{c}\frac12 -0\\ \frac{\sqrt 3}{2}-1}\end{array}\right)\\ \vec{DE} \left(\begin{array}{c}\frac12\\ \frac{\sqrt 3}{2}-1}\end{array}\right)\\[/tex]
[tex]\vec{EF} \left(\begin{array}{c}x_F - x_E\\ y_F-y_E}\end{array}\right)\\ \vec{EF} \left(\begin{array}{c}1+\frac{\sqrt3 }{2}- \frac 12 \\ \frac 12-\frac{\sqrt 3}{2}}\end{array}\right)\\ \vec{EF} \left(\begin{array}{c}\frac 12+\frac{\sqrt3 }{2} \\ \frac 12-\frac{\sqrt 3}{2}}\end{array}\right)[/tex]
Deux vecteurs u(x,y) et v(x',y') (avec les flèches) sont colinéaires si et seulement si leurs coordonnées vérifient :
xy'-y'x = 0
On calcule :
[tex]\frac 12 \left(\frac 12 - \frac{\sqrt 3}{2}\right) - \left(\frac{\sqrt 3}{2} -1\right)\left(\frac 12 + \frac{\sqrt 3}{2}\right) = \frac 14 - \frac{\sqrt 3}{4} - \left(\frac{\sqrt 3}{4}+\frac 34 -\frac 12 -\frac{\sqrt 3}{2}\right)\\ =\frac 14 -\frac{\sqrt 3}{4} -\left(-\frac{\sqrt 3}{4}+\frac 14\right) = 0[/tex]
Les vecteurs DE et EF (avec les flèches) sont colinéaires ; les points D, E et F sont alignés.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.