Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Soit U la suite définie pas U0 appartint ]1;+ infinie [
pour tout n Un+1= √(3Un-2)
U(n) est minorée par et majorée par 2
Preuve par récurrence :
(I) : U(0)>1 donc 1<U(0)<2
(H) : 1<U(n)<2
donc 1<3U(n)-2<4
donc 1<√(3U(n)-2)<2
donc 1<U(n+1)<2
(C) : pour tout entier n : 1<U(n)<2
U(n+1)-U(n)=√(3U(n)-2)-U(n)
=(√(3U(n)-2)-U(n))(√(3U(n)-2+U(n))/(√(3U(n)-2)+U(n))
=(3U(n)-2-U(n)²)/(√(3U(n)-2)+U(n))
=(2-U(n))(U(n)-1)/(√(3U(n)-2)+U(n))
or 1<U(n)<2
donc 2-U(n)>0 et U(n)-1>0
donc U(n+1)-U(n)>0
donc U est croissante et monotone
ainsi U est croissante et majorée par 2
donc (th de convergence monotone) U est convergente vers k
sa limite k vérifie le th du point fixe
donc k=√(3k-2)
donc k²=3k-2
donc k²-3k+2=0
donc (k-2)(k-1)=0
donc k=2 car k>1
pour tout n Un+1= √(3Un-2)
U(n) est minorée par et majorée par 2
Preuve par récurrence :
(I) : U(0)>1 donc 1<U(0)<2
(H) : 1<U(n)<2
donc 1<3U(n)-2<4
donc 1<√(3U(n)-2)<2
donc 1<U(n+1)<2
(C) : pour tout entier n : 1<U(n)<2
U(n+1)-U(n)=√(3U(n)-2)-U(n)
=(√(3U(n)-2)-U(n))(√(3U(n)-2+U(n))/(√(3U(n)-2)+U(n))
=(3U(n)-2-U(n)²)/(√(3U(n)-2)+U(n))
=(2-U(n))(U(n)-1)/(√(3U(n)-2)+U(n))
or 1<U(n)<2
donc 2-U(n)>0 et U(n)-1>0
donc U(n+1)-U(n)>0
donc U est croissante et monotone
ainsi U est croissante et majorée par 2
donc (th de convergence monotone) U est convergente vers k
sa limite k vérifie le th du point fixe
donc k=√(3k-2)
donc k²=3k-2
donc k²-3k+2=0
donc (k-2)(k-1)=0
donc k=2 car k>1
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.