Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
C'est la démonstration de l'irrationnalité de √2 par Pythagore en 611 av J-C
Préliminaire
(2n+1)²=4n²+4n+1
p=2n+1 donc p²=4n²+4n+1
donc p²=2(2n²+2n)+1
donc p²=2k+1 donc p² est impair
si q² est pair alors q²=2m
donc q ne peut être impair d'après ci-dessus
(raisonnement par contraposée si A implique B alors non B implique non A)
Problème
raisonnement par l'absurde
si √2 est rationnel alors √2=a/b par définition d'un rationnel
si a/b est irréductible alors a et b sont premiers entre eux
√2=a/b donc a=√2*b donc a²=2b²
donc a²=2p donc a² est pair
d'après le Préliminaire : p impair implique p² impair
donc par contraposée p² pair implique p pair
donc ici a est pair donc a=2k avec k entier
donc (2k)²=2b² donc b²=2k² donc b² est pair
alors b est aussi pair
par conséquent a et b sont pairs
donc a et b sont multiples de 2
donc a et b ne sont pas premiers entre eux !
CONTRADICTION !
donc l'hypothèse de départ est fausse
Conclusion : √2 est un nombre irrationnel
Préliminaire
(2n+1)²=4n²+4n+1
p=2n+1 donc p²=4n²+4n+1
donc p²=2(2n²+2n)+1
donc p²=2k+1 donc p² est impair
si q² est pair alors q²=2m
donc q ne peut être impair d'après ci-dessus
(raisonnement par contraposée si A implique B alors non B implique non A)
Problème
raisonnement par l'absurde
si √2 est rationnel alors √2=a/b par définition d'un rationnel
si a/b est irréductible alors a et b sont premiers entre eux
√2=a/b donc a=√2*b donc a²=2b²
donc a²=2p donc a² est pair
d'après le Préliminaire : p impair implique p² impair
donc par contraposée p² pair implique p pair
donc ici a est pair donc a=2k avec k entier
donc (2k)²=2b² donc b²=2k² donc b² est pair
alors b est aussi pair
par conséquent a et b sont pairs
donc a et b sont multiples de 2
donc a et b ne sont pas premiers entre eux !
CONTRADICTION !
donc l'hypothèse de départ est fausse
Conclusion : √2 est un nombre irrationnel
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.